Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

318 results about "Silumin" patented technology

Silumin is a general name for a group of lightweight, high-strength aluminium alloys based on an aluminum–silicon system. Aluminium-silicon alloys typically contain 3 to 25% silicon content. Casting is the primary use of aluminum-silicon alloys, but they can also be utilized in rapid solidification processes and powder metallurgy. Alloys used by powder metallurgy, rather than casting, may contain even more silicon, up to 50%. Silumin has a high resistance to corrosion, making it useful in humid environments.

Heat resisting low expansion silumin and preparation thereof

The invention belongs to the field of non-ferrous materials and preparation and formation thereof, and relates to heat-resisting low-expansion high-silicon cast aluminum alloy. The alloy comprises the following compositions in percentage by mass: 18 to 25 percent of silicon, 1.0 to 2.5 percent of copper, 0.2 to 0.8 percent of magnesium, 0.5 to 2.5 percent of nickel, 0.3 to 0.6 percent of manganese, 0.3 to 1.0 percent of misch metal RE (the content of cerium is more than 40 percent), 0.006 to 0.04 percent of phosphorus, and the balance of aluminum. The production method comprises: firstly, melting raw materials of copper, nickel, silicon and aluminum into an aluminum silicon alloy fused mass; secondly, re-superheating the aluminum silicon alloy fused mass to the temperature of between 850 and 870 DEG C, adding manganese raw materials, and obtaining a mixed fused mass after uniform melting; thirdly, adjusting the temperature of the mixed fused mass to between 780 and 800 DEG C and adding the magnesium into the mixed fused mass; fourthly, adding rare earth raw materials into the mixed fused mass, maintaining at the temperature for 10 to 15 minutes, and raising the temperature to between 820 and 840 DEG C; fifthly, performing refining; and sixthly, raising the temperature of the refined mixed fused mass to between 830 and 850 DEG C, adding phosphorus raw materials into the mixed fused mass for modification, maintaining at the temperature for 15 to 20 minutes after modification, and performing casting, wherein the casting temperature is between 790 and 830 DEG C. Castings can well meet the performance requirements of peripheral materials of automobile engines after T6 heat treatment.
Owner:HUAZHONG UNIV OF SCI & TECH

Low-melting-point and high-intensity aluminum alloy powder brazing filler metal and preparing method of low-melting-point and high-intensity aluminum alloy powder brazing filler metal

The invention discloses a high-intensity aluminum alloy powder brazing filler metal with the melting point being lower than 490 DEG C and a preparing method of the high-intensity aluminum alloy powder brazing filler metal with the melting point being lower than 490 DEG C, and belongs to the technical field of aluminum alloy brazing. The brazing filler metal comprises the following ingredients in parts by weight: 8.6 to 9.5 percent of Si, 16.5 to 17.5 percent of Cu, 8.5 to 9.5 percent of Ge, 4.5 to 5.0 percent of Ni, 4.0 to 5.0 percent of Zn, 0.70 to 0.75 percent of Sr, 0.35 to 0.40 percent of Bi, 0.40 to 0.45 percent of La, 0.40 to 0.55 percent of Ce, 0.10 to 0.20 percent of Yb and the balance Al. The brazing filler metal is prepared by adopting a flux rapid cooling-ball milling technology, the melting point is lower than 490 DEG C, the brazing temperature is 500 to 520 DEG C, and the brazing filler metal is applicable to aluminum alloy brazing with the solid phase line temperature higher than 500 DEG C, such as in-furnace brazing, vacuum brazing, induction brazing and flame brazing. The brazing filler metal is matched with QJ201 for brazing 3003 aluminum alloy, and the shearing intensity of a brazing joint is greater than 74MPa.
Owner:ZHEJIANG UNIV

High-strength aluminum-alloy material, aluminum-alloy plate and manufacturing method thereof

The invention discloses a high-strength aluminum-alloy material. The high-strength aluminum-alloy material contains the chemical elements in percentage by mass: not lower than 1.5% and not higher than 3.0% of Mg, not lower than 0.05% and not higher than 0.2% of Si, not lower than 0.1% and not higher than 0.2% of Mn, not lower than 0.2% and not higher than 0.4% of Fe, higher than 0 and not higher than 0.03% of Cu, higher than 0 and not higher than 0.05% of Ti, either not lower than 0.05% and not higher than 0.15% of Ca or not lower than 0.05% and not higher than 0.15% of Sr and the balance of Al and other unavoidable impurities. The invention further discloses an aluminum-alloy plate manufactured from the aluminum-alloy material. The invention further discloses a manufacturing method of the aluminum-alloy plate, wherein the method comprises the steps of carrying out double-strip casting, carrying out cold rolling, carrying out online solid solution treatment and carrying out online aging pretreatment. The high-strength aluminum-alloy material and the aluminum-alloy plate, disclosed by the invention, have relatively high strength and good natural aging stability. After painting and baking, the yield strength of the high-strength aluminum-alloy material and the aluminum-alloy plate is higher than 300Mpa.
Owner:BAOSHAN IRON & STEEL CO LTD

Treatment method for alloying surface of superhigh-strength aluminum alloy

The invention provides a treatment method for alloying the surface of a superhigh-strength aluminum alloy. The treatment method comprises the following steps: firstly, manufacturing a Cu-Cr alloy cast ingot of which the Cr content is 3-20 percent by using a vacuum induction smelting method; carrying out surface removal and grinding treatment and then fixedly mounting the Cu-Cr alloy cast ingot on a target device of vacuum magnetron sputtering equipment; mounting the aluminum alloy subjected to clean surface grinding treatment on a matched clamp and mounting the aluminum alloy into a vacuum chamber of the vacuum magnetron sputtering equipment; opening the vacuum magnetron sputtering equipment; plating a Cu-Cr alloy film with the thickness of 2-10mum on the surface of an aluminum alloy substrate; and feeding the surface-plated Ni-Cr alloy film into strong-current pulse electron beam equipment for carrying out surface alloying treatment on the electron beams. According to the method disclosed by the invention, a layer of Cu-Cr alloying layer with high microhardness and favorable wear resistance and corrosion resistance is formed on the surface of the aluminum alloy. The alloyed layer and an aluminum alloy matrix are better bonded; and the surface strength of the aluminum alloy can be effectively improved and the wear resistance and corrosion resistance of the surface of the aluminum alloy are improved.
Owner:CHONGQING UNIV OF TECH

High-strength aluminum alloy online quenching system and online quenching technology

ActiveCN104060059APlay a stretching and straightening effectAvoid lostQuenching devicesEconomic benefitsHigh intensity
The invention discloses a high-strength aluminum alloy online quenching system and an online quenching technology of the high-strength aluminum alloy online quenching system. The high-strength aluminum alloy online quenching system comprises an extruding machine, a heat preservation furnace, a quenching device and a dragging machine. The online quenching technology includes the steps of preheating aluminum alloy cast rods, carrying out hot extrusion while dragging is carried out, carrying out heat preservation or heating for heat preservation, and carrying out quenching treatment. After the high-strength aluminum alloy online quenching system and the online quenching technology of the high-strength aluminum alloy online quenching system are adopted, the time of the whole transferring process that aluminum alloy profile leaves a profile outlet of the extruding machine to reach the quenching device for rapid cooling quenching treatment is quite short, immediate online quenching and continuous production after the process that the aluminum alloy profile is extruded to from product parts is completed are achieved, the production cycle is greatly shortened, and the coincidence of the product quality is guaranteed; in the production process, heat losses are few, energy consumption is low, energy is saved, the environment is improved, energy is saved by more than 80% compared with the vertical air furnace quenching technology, and the economic benefits are substantial.
Owner:SHANDONG HUAJIAN ALUMINUM GRP

High-strength aluminum alloy extruded material with excellent corrosion resistance and method of producing the same

The present invention provides a high-strength aluminum alloy extruded product exhibiting excellent corrosion resistance and secondary workability and suitably used as a structural material for transportation equipment such as automobiles, railroad vehicles, and aircrafts, and a method of manufacturing the same. The aluminum alloy extruded product has a composition containing 0.6 to 1.2% of Si, 0.8 to 1.3% of Mg, and 1.3 to 2.1% of Cu while satisfying the following conditional expressions (1), (2), (3), and (4),
3%≦Si %+Mg %+Cu %≦4%   (1)
Mg %≦1.7×Si %   (2)
Mg %+Si %≦2.7%   (3)
Cu %/2≦Mg %≦(Cu %/2)+0.6%   (4)
and further containing 0.04 to 0.35% of Cr, and 0.05% or less of Mn as an impurity, with the balance being aluminum and unavoidable impurities. The cross section of the extruded product has a recrystallized structure with an average grain size of 500 μm or less. The manufacturing method includes, when extruding the aluminum alloy into a solid product by using a solid die, extruding the aluminum alloy by using a solid die in which a bearing length (L) is 0.5 mm or more and the bearing length (L) and the thickness (T) of the solid product have a relationship expressed as “L≦5 T”, and, when extruding the aluminum alloy into a hollow product by using a porthole die or a bridge die, extruding the aluminum alloy while setting the ratio of the flow speed of the aluminum alloy in a non-joining section to the flow speed of the aluminum alloy in a joining section in a chamber, where the billet reunites after entering a port section of the die in divided flows and subsequently encircling a mandrel, at 1.5 or less.
Owner:THE SOC OF JAPANESE AEROSPACE +2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products