Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1072results about How to "Effective shielding" patented technology

Probe card assembly and kit, and methods of using same

A probe card assembly includes a probe card, a space transformer having resilient contact structures (probe elements) mounted directly thereto (i.e., without the need for additional connecting wires or the like) and extending from terminals on a surface thereof, and an interposer disposed between the space transformer and the probe card. The space transformer and interposer are "stacked up" so that the orientation of the space transformer, hence the orientation of the tips of the probe elements, can be adjusted without changing the orientation of the probe card. Suitable mechanisms for adjusting the orientation of the space transformer, and for determining what adjustments to make, are disclosed. The interposer has resilient contact structures extending from both the top and bottom surfaces thereof, and ensures that electrical connections are maintained between the space transformer and the probe card throughout the space transformer's range of adjustment, by virtue of the interposer's inherent compliance. Multiple die sites on a semiconductor wafer are readily probed using the disclosed techniques, and the probe elements can be arranged to optimize probing of an entire wafer. Composite interconnection elements having a relatively soft core overcoated by a relatively hard shell, as the resilient contact structures are described.
Owner:FORMFACTOR INC

Fringe Field Switching Mode Liquid Crystal Display Device

Provided is a Fringe Field Switching (FFS) mode Liquid Crystal Display (LCD) In the FFS mode LCD, a lower substrate, an upper substrate and a liquid crystal layer interposed between the substrates are included, each pixel region is defined by gate lines and data lines formed to cross each other on the lower substrate, and switching devices are disposed at intersections of the gate lines and the data lines. The FFS mode LCD includes a transparent pixel electrode, and a transparent common electrode disposed apart from the transparent pixel electrode by an insulating layer interposed between the transparent pixel electrode and the transparent common electrode, in the pixel region to adjust transmittance by applying an electric field to the liquid crystal layer, the transparent common electrode has a plurality of bars having a predetermined width in a direction substantially parallel to the data lines, the transparent common electrode has a first bar formed to cover the data lines and a second bar formed adjacent to the first bar in a central area of the pixel region, a distance between the first bar and the second bar is larger than a distance between bars formed in the pixel region, and one end of the transparent pixel electrode is disposed between the first bar and the adjacent secondbar.
Owner:HYDIS TECH

Probe card assembly and kit, and methods of making same

A probe card assembly includes a probe card, a space transformer having resilient contact structures (probe elements) mounted directly to (i.e., without the need for additional connecting wires or the like) and extending from terminals on a surface thereof, and an interposer disposed between the space transformer and the probe card. The space transformer and interposer are “stacked up” so that the orientation of the space transformer, hence the orientation of the tips of the probe elements, can be adjusted without changing the orientation of the probe card. Suitable mechanisms for adjusting the orientation of the space transformer, and for determining what adjustments to make, are disclosed. The interposer has resilient contact structures extending from both the top and bottom surfaces thereof, and ensures that electrical connections are maintained between the space transformer and the probe card throughout the space transformer's range of adjustment, by virtue of the interposer's inherent compliance. Multiple die sites on a semiconductor wafer are readily probed using the disclosed techniques, and the probe elements can be arranged to optimize probing of an entire wafer. Composite interconnection elements having a relatively soft core overcoated by a relatively hard shell, as the resilient contact structures are described.
Owner:FORMFACTOR INC

Shielded planar capacitor

ActiveUS6903918B1Mitigate eddy current lossMinimize eddy current lossSemiconductor/solid-state device detailsFixed capacitor dielectricIsolation layerParasitic capacitance
A shielded planar capacitor structure (202) is discussed, formed within a Faraday cage (210) in an integrated circuit device (200). The capacitor structure (202) reduces parasitic capacitances within the integrated circuit device (200). The capacitor (202) comprises a capacitor stack (102) formed between a first and second metal layers (230,232) of the integrated circuit. The capacitor stack (102) has a first conductive layer formed from a third metal layer (106) disposed between the first and second metal layers (230,232) of the integrated circuit, a dielectric isolation layer (110) disposed upon the first conductive layer (106); and a second conductive layer (112) disposed upon the dielectric isolation layer (110) and overlying the first conductive layer (106). The structure (202) further has a first and second isolation layers (104,114) disposed upon opposite sides of the capacitor stack (102). The Faraday cage (210) is formed between the first and second metal layers (230,232) of the integrated circuit (200), comprising a first and second shield layers (402,414) each having a plurality of mutually electrically conductive spaced apart traces (404). The first and second isolation layers (404,414) and the capacitor stack (102,434) are sandwiched between the first and second shield layers (402,414). Conductive elements (432) are distributed around the periphery of the capacitor stack (102,434) and the first and second isolation layers (404,412). The conductive traces (424) of the first shield layer (402) are connected to the conductive traces (424) of the second shield layer (414) through the conductive elements (432).
Owner:TEXAS INSTR INC

Novel infrared and radar integrated stealth fabric and preparation method thereof

The invention discloses a novel infrared and radar integrated stealth fabric and a preparation method thereof. The stealth fabric comprises an infrared camouflage surface layer and an antistatic bottom layer in turn from outside to inside; the infrared camouflage surface layer comprises an infrared stealth layer, a fabric layer and a radar wave absorption attenuation layer in turn from outside toinside; the infrared stealth layer is compounded by using a coating coated by an infrared stealth coating and a magnetron sputtering ITO (indium tin oxide) film arranged on the surface of the coating; the radar wave absorption attenuation layer comprises a sponge body; and a wave absorption material is adsorbed on the sponge body. The stealth fabric can realize radar stealth function and infraredstealth function at the same time, has good integral wave absorption effect and low surface density of materials, and has good effects on the aspects of breaking strength, bursting strength and the like. Moreover, excessive complex processes are not adopted for manufacturing the stealth fabric, and the stealth fabric can be produced by using a conventional fabric production method, so the stealthfabric is convenient for production and easy for implementation.
Owner:WUYI UNIV

Method of making a contact structure with a distinctly formed tip structure

A probe card assembly includes a probe card, a space transformer having resilient contact structures (probe elements) mounted directly to (i.e., without the need for additional connecting wires or the like) and extending from terminals on a surface thereof, and an interposer disposed between the space transformer and the probe card. The space transformer and interposer are “stacked up” so that the orientation of the space transformer, hence the orientation of the tips of the probe elements, can be adjusted without changing the orientation of the probe card. Suitable mechanisms for adjusting the orientation of the space transformer, and for determining what adjustments to make, are disclosed. The interposer has resilient contact structures extending from both the top and bottom surfaces thereof, and ensures that electrical connections are maintained between the space transformer and the probe card throughout the space transformer's range of adjustment, by virtue of the interposer's inherent compliance. Multiple die sites on a semiconductor wafer are readily probed using the disclosed techniques, and the probe elements can be arranged to optimize probing of an entire wafer. Composite interconnection elements having a relatively soft core overcoated by a relatively hard shell, as the resilient contact structures are described.
Owner:FORMFACTOR INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products