Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

237results about How to "Increase holding voltage" patented technology

High-voltage ESD (electro-static discharge) protective device triggered by bidirectional substrate

The invention discloses a high-voltage ESD (electro-static discharge) protective device triggered by a bidirectional substrate. The high-voltage ESD protective device triggered by the bidirectional substrate can be used for an on-chip IC (integrated circuit) ESD protective circuit and mainly comprises a substrate Psub, a high-voltage deep N trap, a lightly doped p-type drift region, a first highly doped N+ injection region, a first P+ injection region, a second N+ injection region, a second P+ injection region, a third N+ injection region, a third P+ injection region, a polycrystalline silicon grid, a grid thin oxide layer and a plurality of field oxide isolation regions. Reverse PN nodes at the interface part of the high-voltage N well or the N well and the substrate can be triggered and conducted through the forward and reverse ESD high-voltage pulse effect, two structures of internal SCR (silicon controlled rectifier) and LDMOS (laterally diffused metal oxide semiconductor) operate at the same time so as to form an ESD current discharge path to improve the secondary breakdown current of the device and lower the conducted resistance. The maintaining voltage of the device is improved through hoisting the channel length of the LDMOS device, the internal structure design as well as optimization of layout hierarchy, and the high-performance ESD protection is realized.
Owner:铜陵汇泽科技信息咨询有限公司

Electronic static discharge (ESD) protection device with bidirectional silicon controlled rectifier (SCR) structure embedded with interdigital N-channel metal oxide semiconductor (NMOS)

An electronic static discharge (ESD) protection device with a bidirectional silicon controlled rectifier (SCR) structure embedded with an interdigital N-channel metal oxide semiconductor (NMOS) can be applied to an ESD protection circuit of an on-chip integrated circuit (IC) and mainly comprises a P substrate, a P epitaxial layer, a first N pit, a P pit, a second N pit, a first N+ injection region, a first P+ injection region, a second N+ injection region, a third N+ injection region, a second P+ injection region, a fourth N+ injection region, a fifth N+ injection region, a third P+ injection region, a sixth N+ injection region, a plurality of poly-silicon gates, a plurality of thin gate oxide layers and a plurality of shallow isolation grooves. On one hand, under the positive and negative ESD pulse effects, an ESD current discharge path with a symmetric structure and complete same electrical property exists in the device, the ESD current discharge ability of the device can be improved, and bidirectional protection of an ESD pulse is achieved; and on the other hand, the interdigital NMOS composed of an NMOS M<1> and an NMOS M<2> and a parasitic P pit resistor form a resistance-capacitance coupling current path, so that the ESD robustness of the device is enhanced, the current density in an SCR current conduction path is reduced, the conduction resistance of the SCR is increased, and the maintaining voltage is increased.
Owner:JIANGNAN UNIV

Bidirectional tri-path turn-on high-voltage ESD protective device

ActiveCN102983133ACorrection for weak robustnessCorrection speedSolid-state devicesSemiconductor devicesHigh pressurePolysilicon gate
The invention provides a bidirectional tri-path turn-on high-voltage ESD (Electro-Static Discharge) protective device which can be used in an on-chip IC (Integrated Circuit) high-voltage ESD protective circuit. The bidirectional tri-path turn-on high-voltage ESD protective device comprises a P minus substrate, an N plus buried layer, a left N-type epitaxy, a right N-type epitaxy, a drifting area, a high-voltage P trap, a drain region, a source region, a polysilicon gate, a positive pole contact area and a negative pole contact area, wherein the drifting area, the high-voltage P trap, the drain region, the source region and the polysilicon gate form an NLDMOS (laterally diffused metal oxide semiconductor) structure, and the positive pole contact area, the N plus buried layer, the high-voltage P trap and the source region form a positive SCR (semiconductor control rectifier)structure, so that two high-voltage ESD current discharge paths are formed to improve secondary striking current of the device and reduce the turn-on resistance and trigger voltage; and the negative pole contact area, the left N-type epitaxy, the high-voltage P trap, the N plus buried layer and the drain region form a reverse SCR structure to form a reverse high-voltage ESD current discharge path. The current paths of the two SCR structures are longer, so that the maintaining voltage of the device can be improved, bidirectional discharge of ESD current can be realized, and the device has bidirectional ESD protection function.
Owner:铜陵汇泽科技信息咨询有限公司

Low-voltage SCR (Silicon Controlled Rectifier) structure for ESD (Electronic Static Discharge) protection of integrated circuit chip

The invention relates to a low-voltage SCR (Silicon Controlled Rectifier) structure for ESD (Electronic Static Discharge) protection of an integrated circuit chip, belonging to the technical field of electronics. The structure comprises two kinds of low-voltage SCR ESD protection devices, wherein the first kind of SCR ESD protection device integrates two N-well diodes and two NMOSs (N-channel Metal Oxide Semiconductors); the N-well diodes are connected between I/O (Input/Output) and a VDD (Virtual Device Driver); the NMOSs are connected between the VDD and VSS (Visual Source Safe); and the N-well diodes and the NMOSs form an SCR structure which provides ESD protection between PS and PD modes and VDD-VSS. The second kind of device integrates two P-well diodes and two PMOSs (P-channel Metal Oxide Semiconductors), wherein the P-well diodes are connected between the I/O and the VSS, and the PMOSs are connected between the VSS and the VDD, and the P-well diodes and the PMOSs jointly form an SCR structure which provides ESD protection between ND and NS modes and VDD-VSS. According to the invention, the chip has higher maintaining voltage and latch-up resistance effect during normal working and has lower triggering voltage and higher triggering speed during ESD; and the low-voltage SCR structure can effectively reduce the relative chip-occupying area of the protection devices and decrease parasitic capacitance at the same time of providing a plurality of modes of ESD protection functions and excellent ESD protection performance.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Bidirectional transient voltage suppression device

ActiveCN105374815AIncrease holding voltageImprove electrostatic discharge capacity per unit areaThyristorSolid-state devicesOvervoltageTransient voltage suppressor
The invention discloses an NPNPN-type bidirectional transient voltage suppression device which is based on a silicon planar process, has high maintaining voltage and high peak current, and is capable of bidirectionally clamping transient overvoltage. The NPNPN-type bidirectional transient voltage suppression device comprises a P-type substrate, wherein an N-type deep pit is arranged on the P-type substrate, a first P pit, a first N pit and a second P pit are arranged in the N-type deep pit, a first P+ injection region, a first N+ injection region, a second N pit and a second N+ injection region are sequentially arranged in the P pit from left to right, the second N+ injection region bridges the first P pit and the first N pit, a third N+ injection region, a third N pit, a fourth N+ injection region and a fifth P+ injection are sequentially arranged in the second P pit from left to right, the third N+ injection region bridges the second P pit and the first N pit, the first P+ injection region and the first N+ injection region are connected with a positive electrode, and the fourth N+ injection region and the second P+ injection region are connected to a negative electrode. The device can be used for transient overvoltage suppression on a chip pin with a signal level of (-5)V to (+5)V.
Owner:SUPERESD MICROELECTRONICS TECH CO LTD

LDMOS-SCR device with source-end embedded finger NMOS

The invention provides an LDMOS-SCR device with a source-end embedded finger NMOS, which can be applied to improving ESD protection reliability of an on-chip IC. The LDMOS-SCR device with the source-end embedded finger NMOS mainly comprises a P substrate, a P epitaxy, a P well, an N well, a first N+ injection region, a second N+ injection region, a first P+ injection region, a third N+ injection region, a fourth N+ injection region, a second P+ injection region, a fifth N+ injection region, a plurality of polysilicon gates, a plurality of thin gate oxides and a plurality of field oxide insulation regions. On one hand, the second P+ injection region, a third polysilicon gate, the fifth N+ injection region, the N well, the P well, the first P+ injection region, the first N+ injection region form a parasitical LDMOS-SCR current path, thereby reinforcing the ESD robustness of the LDMOS-SCR device; on the other hand, the first N+ injection region, a first polysilicon gate, a first thin gate oxide, the second N+ injection region, the first P+ injection region, the third N+ injection region, a second polysilicon gate, a second thin gate oxide and the fourth N+ injection region form the finger NMOS and a parasitic resistor, thereby forming a resistance-capacitance coupling effect; thereby, the maintaining voltage is increased.
Owner:JIANGNAN UNIV

Bidirectional ESD protection anti-latch-up device of holosymmetric dual-grid-control-diode triggering SCR structure

The invention discloses a bidirectional ESD protection anti-latch-up device of a holosymmetric dual-grid-control-diode triggering SCR structure, and the device can be used for improving the capabilityof an IC chip in resisting ESD. The device mainly consists of a P substrate, a P epitaxial part, a first N well, a P well, a second N well, a first N+ injection region, a first P+ injection region, asecond N+ injection region, a second P+ injection region, a third N+ injection region, a third P+ injection region, a fourth N+ injection region, a first polysilicon gate, a first thin gate oxide layer covering the first polysilicon gate, a second polysilicon gate, and a second thin gate oxide layer covering the second polysilicon gate. The device has a resistance-capacitance coupling auxiliary triggering path under the action of ESD stress, does not need an additional layout area, also can make the most of the advantages of low triggering voltage of a resistance-capacitance coupling circuitand the short start time, and shortens the voltage hysteresis amplitude of the device. In addition, the device also employs the conduction characteristics of the gate control diodes, improves the potential of a parasitic well resistor of the N well, and speeds up the starting of a current releasing path of the SCR structure. Moreover, the device has two ESD current releasing paths and a holosymmetric structure, facilitates the improvement of the ESD robustness of the device, and can achieve the bidirectional protection of ESD.
Owner:JIANGNAN UNIV

NPNPN type bidirectional silicon controlled rectifier electrostatic protection device with high maintaining voltage

The invention discloses an NPNPN type bidirectional silicon controlled rectifier electrostatic protection device with high maintaining voltage. The NPNPN type bidirectional silicon controlled rectifier electrostatic protection device with high maintaining voltage comprises a P type substrate, wherein an N type buried layer is arranged in the P type substrate; a first N type deep trap, a high voltage N trap and a second N type deep trap are arranged on the N type buried layer; a first N trap, a first P trap, a second N trap, a second P trap, a third N trap, a third P trap and a fourth N trap are arranged on the high voltage N trap; a first P+ injection region, a first N+ injection region and a second N+ injection region are arranged in the first P trap; and a third N+ injection region, a fourth N+ injection region and a second P+ injection region are arranged in the third P trap. The NPNPN type bidirectional silicon controlled rectifier electrostatic protection device with high maintaining voltage has the advantages that one P trap is added between two N traps, the thickness of the P trap is just exhausted with the N traps at the left side and the right side, an access with a certain resistance is formed, a bidirectional SCR structure can have one relatively high maintaining voltage after avalanche breakdown and breakover, and the problem that an electrostatic discharge device is locked due to low maintaining voltage after breakover is effectively prevented.
Owner:SUPERESD MICROELECTRONICS TECH CO LTD

SCR for electrostatic protection, chip and system

The invention provides a semiconductor controlled rectifier (SCR) for electrostatic protection, a chip and a system, relates to the electronic technology field and can realize start voltage reduction and maintenance voltage improvement. The SCR comprises a semiconductor substrate, and a first well, a second well and a third well which are arranged on the semiconductor substrate, wherein conductive types of the first well and the third well are identical, the second well is in a different conductive type, the first well is internally provided with a first heavily doped region and a second heavily doped region, the first heavily doped region and the second heavily doped region are different in conductive types, the first heavily doped region and the first well are identical in conductive types, the third well is internally provided with a third heavily doped region, the third heavily doped region and the third well are identical in conductive types, the second well is internally provided with a fourth heavily doped region, the four heavily doped region and the second well are identical in conductive types, the fourth heavily doped region extends to the first well and the third well, a first gap is arranged between the fourth heavily doped region and the second heavily doped region, and a metal gate is arranged at the first gap.
Owner:HUAWEI TECH CO LTD

Low-trigger bidirectional silicon-controlled electrostatic protection device with high maintenance voltage

The invention discloses a low-trigger bidirectional silicon-controlled electrostatic protection device with a high maintenance voltage. The low-trigger bidirectional silicon-controlled electrostatic protection device comprises a P-type substrate, wherein an N deep pit is arranged is arranged in the P-type substrate, a first P well and a second P well are arranged in the N deep pit, a first P+ injection region, a second P+ injection region and a first N+ injection are arranged in the first P well, a second N+ injection region, a third P+ injection region and a fourth P+ injection region are arranged in the second P well, the second P+ injection region and the first N+ injection region are connected and are used as a positive electrode of the device, and the second N+ injection region and the third P+ injection region are connected and used as a negative electrode of the device. The low-trigger bidirectional silicon-controlled electrostatic protection device has the capability of bidirectional electrostatic discharging and can be simultaneously used for electrostatic protection of an input-output pin of an integrated circuit of which a signal level is lower than ground or higher thanthe ground, the device is enabled to have low trigger voltage and also has relatively high maintenance voltage on the premise that no extra area is expanded and the conduction capability of the device is not reduced, so that the device has favorable electrostatic discharge (ESD) window.
Owner:SUPERESD MICROELECTRONICS TECH CO LTD

Bidirectional silicon-controlled electrostatic protection device with high protection level and fabrication method thereof

The invention discloses a bidirectional silicon-controlled electrostatic protection device with high protection level. The bidirectional silicon-controlled electrostatic protection device comprises aP-type substrate, wherein an N-type buried layer is arranged in the substrate, an N-type deep well is arranged on the N-type buried layer, a first P well and a second P well are arranged in the N-typedeep well, a first P+ injection region and a plurality of N+ injection regions I are arranged in the first P well, a second P+ injection region and a plurality of N+ injection regions II are arrangedin the second P well, the first P+ injection region and all N+ injection regions I are connected and used as a positive electrode of the device, and the second P+ injection region and all N+ injection regions II are connected and used as a negative electrode of the device. The numbers of the N+ injection regions I and the N+ injection regions II can be increased or reduced according to differentprotection levels, the numbers of the N+ injection regions I and the N+ injection regions II are increased if the protection level is high, the uniform current distribution of the device is improved,and the robustness of the device is improved; and if the protection level is low, the numbers of the N+ injection regions I and the N+ injection regions II are reduced, and the layout area is reduced.
Owner:XIANGTAN UNIV

Laterally diffused metal oxide semiconductor (LDMOS) transistor, layout method and manufacture method

The invention provides a structure of a laterally diffused metal oxide semiconductor (LDMOS) transistor, a manufacture method and a layout method of the structure. The structure comprises a substrate, a first mixing pit, a second mixing pit, a grid electrode structure, a first isolation structure, a second isolation structure, a source region, a drain region, an interlamination medium layer, a source region plug and a drain region plug. The first mixing pit and the second mixing pit are located in the substrate, the grid electrode structure is located above the first mixing pit and the second mixing pit, the isolation structure surrounds the first mixing pit and the second mixing pit, one side of the second isolation structure is adjacent to the grid electrode structure, the second isolation structure has two opposite ends and is connected with the first isolation structure, the source region is located in the first mixing pit, a third isolation structure is formed in the source region, and the source region is used for increasing resistance of the source region, the drain region is located in the second mixing pit between the first isolation structure and the second isolation structure, and the interlamination medium layer is located on the surface of the substrate, and the source region plug and the drain region plug are located in the interlamination medium layer. The structure guarantees that the LDMOS transistor can be normally opened.
Owner:SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products