Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

44results about How to "Raise the level of doping" patented technology

Controlling doping of synthetic diamond material

A method of manufacturing synthetic CVD diamond material, the method comprising: providing a microwave plasma reactor comprising: a plasma chamber; one or more substrates disposed in the plasma chamber providing a growth surface area over which the synthetic CVD diamond material is to be deposited in use; a microwave coupling configuration for feeding microwaves from a microwave generator into the plasma chamber; and a gas flow system for feeding process gases into the plasma chamber and removing them therefrom, injecting process gases into the plasma chamber; feeding microwaves from the microwave generator into the plasma chamber through the microwave coupling configuration to form a plasma above the growth surface area; and growing synthetic CVD diamond material over the growth surface area, wherein the process gases comprise at least one dopant in gaseous form, selected from a one or more of boron, silicon, sulphur, phosphorous, lithium and beryllium at a concentration equal to or greater than 0.01 ppm and/or nitrogen at a concentration equal to or greater than 0.3 ppm, wherein the gas flow system includes a gas inlet comprising one or more gas inlet nozzles disposed opposite the growth surface area and configured to inject process gases towards the growth surface area, and wherein the process gases are injected towards the growth surface area at a total gas flow rate equal to or greater than 500 standard cm3 per minute and/or wherein the process gases are injected into the plasma chamber through the or each gas inlet nozzle with a Reynolds number a Reynolds number in a range 1 to 100.
Owner:ELEMENT SIX LTD

High-temperature-resistant composite proton exchange membrane and preparation method thereof

A high-temperature-resistant composite proton exchange membrane is formed by compositing polybenzimidazole and an aromatic polymer with benzyl halide in side chains to form a composite cross-linking membrane and impregnating the composite cross-linking membrane in phosphoric acid. The mass fraction of the heterocyclic aromatic polymer containing benzyl halide in the composite cross-linking membrane is 0.01-99.99wt%. The mass fraction of the phosphoric acid doped in the composite proton exchange membrane is 1-99%. Compared with the existing phosphoric acid doped high-temperature proton exchangemembrane, the high-temperature-resistant composite proton exchange membrane of the invention has the advantages as follows: the glass transition temperature of the aromatic polymer with benzyl halidein side chains is high, which ensures the stability of the composite proton exchange membrane at high temperature; and each molecular chain contains multiple benzyl bromide groups and forms a covalent bond with multiple polybenzimidazole molecular chains, which improves the dimensional stability of the composite membrane; the composite proton exchange membrane has a high phosphoric acid doping level and good mechanical performance, and is a high-temperature proton exchange membrane with excellent comprehensive performance; and the preparation method is simple, and the composite proton exchange membrane has wide applications and is convenient for large-scale production.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

IGBT (insulated gate bipolar translator) device with high-temperature self-protection function

The invention discloses an IGBT (insulated gate bipolar translator) device with a high-temperature self-protection function, belonging to the technical field of power semiconductor devices. According to the invention, deep-energy-level impurities (12) with an acceptor energy level are introduced in a channel region (A) close to a polysilicon gate electrode (9) in the P-type base region (5) of the traditional IGBT device, and the deep-energy-level impurities (12) have a low ionization rate at a normal temperature, and little influence on the threshold voltage of the device. In the case that the device works under a large current, the temperature of the device rises, the ionization rate of the deep-energy-level impurities (12) is greatly increased, that is, the effective doping level of the P-type base region (5) is increased, so that the threshold voltage of the device is greatly increased, the saturation current value of the IGBT device and the negative temperature coefficient of the forward voltage drop of the device are decreased, and a purposes of further optimizing the negative temperature coefficient of the forward voltage drop of the IGBT device is achieved under the action of the dual mechanisms. The failure of the device due to the too high temperature caused by the own generated heat loss is avoided, so that the device has a high-temperature self-protection function.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA +1

Lattice mismatch solar cell containing novel tunneling junction and preparation method thereof

The invention discloses a lattice mismatch solar cell containing a novel tunneling junction and a preparation method thereof. A Ge monocrystal is used as a substrate, and a GaInP nucleation layer, a GaInAs buffer layer, a lattice gradient buffer layer, a first novel tunneling junction, a GaInAs sub cell, a second novel tunneling junction and a GaInP sub cell are grown on the surface of the substrate sequentially from bottom to top. The first novel tunneling junction and the second novel tunneling junction include a layer of degenerate p-type gallium indium nitrogen arsenide (Ga<1-y>In<y>N<x>As<1-x>) and a layer of degenerate n-type gallium indium arsenide (Ga<1-z>In<z>As), the lattice constants of the two layers of materials are respectively consistent with the materials of the adjacent semiconductor layers or the mismatching degree is less than 3%, and the thickness of each layer is 5-100nm. The novel tunneling junction adopted in the invention has better conductivity and light transmission than general tunneling junctions. More importantly, as a rigid material, the novel tunneling junction can filter a lot of threading dislocation and mismatch dislocation, reduce non-radiative recombination, prolong the service life of minority carriers and improve the photoelectric conversion efficiency.
Owner:ZHONGSHAN DEHUA CHIP TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products