Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

516 results about "Boron doping" patented technology

Doping means the introduction of impurities into a semiconductor crystal to the defined modification of conductivity. Two of the most important materials silicon can be doped with, are boron (3 valence electrons = 3-valent) and phosphorus (5 valence electrons = 5-valent).

Fabrication method of double-side PERC crystalline silicon solar cell

The invention discloses a fabrication method of a double-side PERC crystalline silicon solar cell. The fabrication method comprises the following steps of (1) removing damage of a silicon wafer, and performing texturing and cleaning; (2) performing diffusion to form a pn junction and performing front-surface laser doping; (3) etching and removing PSG; (4) plating a back-surface passivation thin film; (5) plating a front-surface anti-reflection film; (6) printing boron source paste on a back surface; (7) performing back-surface laser doping and windowing; (8) performing back-surface electrode printing; and (9) performing front-surface electrode printing. A laser doping technology is applied to a process of a selective emitter formed on a front surface and local boron doping on the back surface, only two processes of laser doping and boron source paste printing are added on the basis of a conventional PERC battery process, and the conversion efficiency of the double-side PERC cell is greatly improved; moreover, with the adoption of a secondary printing alignment laser printing MARK point mode, the back-surface metallization of the double-side PERC cell is achieved; and by the method,the problem of difficulty in alignment of a back-surface aluminum grid line to a laser windowing grid line of the silk-screen printed double-sided PERC cell is completely solved.
Owner:SPIC XIAN SOLAR POWER CO LTD

Modified lithium ion battery ternary positive electrode material and preparation method thereof

The invention relates to a modified lithium ion battery ternary positive electrode material and a preparation method of the modified lithium ion battery ternary positive electrode material. The chemical generation formula of the material is as follows: LiNiaCo<1-a-b>MnbBxO2/TiO2, wherein a is more than 0 and less than 1, b is more than 0 and less than 1, (1-a-b) is more than 0 and less than 1, x is more than 0.005 and less than 0.1, and the TiO2 is a cladding layer. The soluble nickel salt, cobalt salt and manganese salt are prepared into a mixed salt solution, the mixed salt solution is reacted with a mixed alkaline solution prepared by mixing the NaOH and ammonium hydroxide, after being filtered, washed and dried, the reaction product is mixed with a boronic compound and roasted for 4h to 12h at the temperature of 300 to 800 DEG C under an air atmosphere, then the roasted product is ball milled with the lithium salt to be uniformly mixed together, the mixture is coated with titanium dioxide after being calcined at the high temperature to obtain the modified lithium ion battery ternary positive electrode material. The prepared boron doping modified ternary positive electrode material is high in specific capacity and good in cycling performance.
Owner:ZHEJIANG MEIDARUI NEW MATERIAL TECH CO LTD

High efficiency N-type double-faced solar cell and preparation method thereof

The invention relates to a high efficiency N-type double-faced solar cell and a preparation method thereof. The structure of the solar cell comprises an N-type silicon slice substrate, a front side boron doping layer, a back side phosphor doping layer, double-faced silicon dioxide passivation layers, doubled-faced silicon nitride antireflection layers and double-faced electrodes. The invention further discloses a preparation method for the solar cell, the preparation method particularly comprises the first step that double-faced texturization is conducted; the second step that front side boron diffusion is conducted; the third step that front side film masking is conducted; the fourth step that back side washing is conducted; the fifth step that back side phosphorus diffusion is conducted; the sixth step that a mask film is removed; the seventh step that double-faced passivation is conducted; the eighth step that double-faced film coating is conducted; the ninth step that the front side electrodes and the back side electrodes are formed; the tenth step that laser edge carving is conducted. According to the high efficiency N-type double-faced solar cell and the preparation method thereof, knots are formed on both the front side and the back side of the N-type silicon slice, the front side and the back side both have high photoelectric converting rates, the output power of an assembly of the high efficiency N-type double-faced solar cell is 20% higher than the output power of a common solar cell, and meanwhile the high efficiency N-type double-faced solar cell is applicable to large-scale industrial production due to the fact that the preparation technology is simple and practical.
Owner:常州顺风太阳能科技有限公司

Capacitor array structure and manufacture method thereof

The invention provides a capacitor array structure and a manufacture method thereof. The method includes 1) providing a semiconductor substrate; 2) forming sacrificial layer and support layers in an alternating and stacking manner on the upper surface of the semiconductor substrate; 3) forming graphic mask layers on the upper surfaces of the sacrificial layer and support layers arranged in an alternating and stacking manner, wherein the graphic mask layers have a plurality of holes; 4) forming capacitance holes in the support layers and the sacrificial layers; 5) forming lower electrode layersin the capacitance layers; 6) removing the sacrificial layers and remaining the support layers on the semiconductor substrate; 7) forming capacitance medium layers on the inner surfaces and the outersurface of the lower electrode layers; 8) forming upper electrode layers on the outer surfaces of the capacitance medium layers; 9) forming upper electrode filling layers on the outer surface of theupper electrode layers, wherein the material of the upper electrode filling layers contains boron doped germanium-silicon. According to the invention, temperature of a formation technique can be reduced, so that influence on the capacitance medium layers by thermal budge can be reduced. At the same time, current carrier moving rate can be improved, so that the resistance value of the filling layers can be reduced.
Owner:CHANGXIN MEMORY TECH INC

Fabrication method of P-type back-surface tunneling oxide passivation contact solar cell

The invention provides a fabrication method of a P-type back-surface tunneling oxide passivation contact solar cell. The method comprises the steps of performing previous process processing on a frontsurface and a back surface of a P-type single-crystal silicon wafer; oxidizing the back surface to form an ultrathin tunneling oxide layer and fabricate a boron-doping silicon thin film layer; performing phosphorus diffusion on the front surface of the single-crystal silicon wafer, and fabricating a selective emitter; and printing metal electrodes on surfaces of a first passivation anti-reflection layer on the back surface and a second passivation anti-reflection layer on the front surface of the single-crystal silicon wafer, and forming favorable contact between the metal electrodes and thesingle-crystal silicon wafer, thereby obtaining P-type back-surface tunneling oxide passivation contact of the solar cell. The invention provides a complete and practical P-type tunneling oxide passivation contact solar fabrication process circuit, a process method of first back-surface boron-doping poly-silicon thin film and then front-surface phosphorus diffusion, secondary phosphorus diffusioncan be effectively prevented, so that a phenomenon that square resistance is not matched is generated, and the operability is high.
Owner:SUZHOU TALESUN SOLAR TECH CO LTD

Silicon-based near infrared photoelectric detector structure and manufacturing method thereof

The invention discloses a silicon-based near infrared photoelectric detector structure which comprises an n type silicon substrate, a phosphorus back field, a sulfur element doping layer, a p type boron doping layer, a see-through surface masking layer, an antireflection film layer, a front contact electrode and a back contact electrode, wherein two layers of step-shaped circular grooves are downwardly arranged above the n type silicon substrate; the phosphorus back field is arranged below the n type silicon substrate; the sulfur element doping layer is arranged in the lower circular groove above the n type silicon substrate; the p type boron doping layer is arranged in the upper circular groove above the n type silicon substrate; the see-through surface masking layer is arranged around the upper circular groove above the n type silicon substrate and covers the periphery of the p type boron doping layer; a circular hole is formed in the middle of the see-through surface masking layer; a ring-shaped groove is arranged at the periphery of the circular hole and the outer diameter of the ring-shaped groove is smaller than the diameter of the upper circular groove above the n type silicon substrate; the antireflection film layer is arranged in the circular hole in the middle of the see-through surface masking layer; the front contact electrode is arranged in the ring-shaped groove on the see-through surface masking layer; and the back contact electrode is arranged below the phosphorus back field. According to the silicon-based near infrared photoelectric detector structure, the difficulty that the traditional silicon photoelectric detectors have weak response to the near infrared lights with wavelengths greater than 1100nm can be solved, and particularly, the high-sensitivity near infrared photoelectric detection for the silicon-based photoelectric detectors can be realized.
Owner:INST OF SEMICONDUCTORS - CHINESE ACAD OF SCI

Preparation method of local boron back surface passive field solar cell

The invention discloses a preparation method of a local boron back surface passive field solar cell. The preparation method of the local boron back surface passive field solar cell includes following steps: (1) selecting a p type single crystal silicon wafer, and covering the back surface of the p type single crystal silicon wafer with a passive layer after pretreatment; (2) arranging a boron source on the passive layer; (3) using a laser to enable the boron source to penetrate through the passive layer, and then mingling the boron source into a silicon substrate so as to generate local boron doping; (4) arranging sizing containing silver above a local boron doping area; (5) completely covering the back surface of the p type single crystal silicon wafer with an aluminum layer, and obtaining the local boron back surface passive field solar cell through subsequent processing. The preparation method of the local boron back surface passive field solar cell can decrease the back metallization contact area, reduces back surface recombination, lateral resistance and contact resistance, increases electric current opening voltage and fill factors of the local boron back surface passive field solar cell and components, and improves photoelectric conversion efficiency of the local boron back surface passive field solar cell and the components.
Owner:JA SOLAR TECH YANGZHOU +1

Double-sided selective emitter high-efficiency crystalline silicon cell and preparation method thereof

ActiveCN111524983AAvoid the disadvantage of high surface concentrationPlay a passivation effectFinal product manufacturePhotovoltaic energy generationPhotovoltaic industrySilicon oxide
The invention belongs to the field of solar photovoltaic industry and particularly provides a double-sided selective emitter efficient crystalline silicon cell and a preparation method thereof. The double-sided selective emitter efficient crystalline silicon cell is characterized in that a double-sided selective emitter structure is adopted, a boron-doped heavily-doped region is a polycrystallinesilicon structure in which aluminum oxide replaces silicon oxide to serve as a tunneling layer, a constant surface concentration increase fill factor (FF) exceeding 1E20atom/cm <3> can be achieved, alightly-expanded region is pure boron doping, a heavily-expanded boron doping process and a lightly-expanded boron doping process can be realized in one step, and the process is simplified. Silicon oxide is adopted as a tunneling layer for a phosphorus-doped region, a heavily-doped region is of a double-layer poly structure, the surface concentration is high, metallization contact is improved, a lightly-expanded region is of a single-layer lightly-doped poly structure, and then the open-circuit voltage (Voc) is increased. The formation of the double-sided selective emitter effectively utilizesa mask etching mode. The double-sided selective emitter efficient crystalline silicon cell is advantaged in that the structure can effectively improve battery efficiency, and is suitable for batch production.
Owner:CHANGZHOU UNIV +1

Method for manufacturing PERT crystalline silicon solar battery by adopting novel doping mode

The invention provides a method for manufacturing a PERT crystalline silicon solar battery by adopting a novel doping mode. The method comprises the steps that texturing is carried out on the single face of a silicon chip, cleaning is carried out, phosphorosilicate glass deposits on the front, borosilicate glass deposits on the back, high-temperature annealing is carried out, n doping layers are formed on the front, p doping layers are formed on the back, plasma edge etching is carried out, the phosphorosilicate glass and the borosilicate glass remaining on the surface of the silicon chip are cleaned and removed, an aluminum oxide/silicon nitride laminating film deposits on the single face of the back, a silicon nitride antireflection film deposits on the front, the film is partially opened from the back so that the boron doping layers can be exposed, a back electrode and an aluminum layer are printed on the back, a silver grid line is printed on the front, and sintering and testing are carried out. The preparing method is simple in step, easy to operate, and capable of efficiently manufacturing the crystalline silicon solar battery in a mass mode, and has the advantages that on the basis of commercialized industrial equipment, conventional battery production equipment possessed by an enterprise production line at present is fully utilized, the equipment investment is greatly reduced, and the manufacturing cost of per watt of the battery is not increased.
Owner:ALTUSVIA ENERGY TAICANG

Method for removing front polycrystalline silicon winding plating

The invention relates to a method for removing front polycrystalline silicon winding plating. The method comprises the following steps: (1) performing boron diffusion on the front surface of a siliconwafer to form a p + emitter and a front borosilicate glass layer; (2) etching the back surface of the silicon wafer, etching the back surface into a plane, removing the boron-doped layer and the borosilicate glass layer on the back surface and the periphery, and removing the front borosilicate glass layer; (3) growing a tunneling oxide layer and an intrinsic amorphous silicon layer on the back surface of the silicon wafer, and forming a front winding polycrystalline silicon layer on the edge region of the front surface of the silicon wafer; (4) carrying out ion implantation on the intrinsic amorphous silicon layer to form a phosphorosilicate glass layer, and performing annealing to form a phosphorus-doped polycrystalline silicon layer; (5) plating a silicon nitride layer on the phosphorus-doped polycrystalline silicon layer; (6) placing the silicon wafer in a mixed solution of alkali and a single crystal additive to remove the front winding polycrystalline silicon layer; and (7) plating aluminum oxide layers on the two sides of the silicon wafer, and plating a passivation antireflection film layer on the aluminum oxide layer on the front side. According to the method, the reactionrate of the alkali liquor in the alkali winding plating solution and the winding plating polycrystalline silicon can be well controlled, and reaction windows can be increased.
Owner:TAIZHOU ZHONGLAI PHOTOELECTRIC TECH CO LTD

Method for improving heat conductivity of carbon/carbon compound material

The invention relates to a method for improving heat conductivity of a carbon/carbon compound material, and belongs to the technical field of carbon/carbon compound material preparation. According to the method, mesophase pitch with high orientation characteristics is adopted for replacing original general pitch or resin to serve as a base body carbon precursor, and boron-doped graphene is added into the mesophase pitch to serve as a heat-conducting additive for further improving the heat conductivity of the carbon/carbon compound material, wherein the orientated flowing of the mesophase pitch can realize that the orientations of a sheet layer of graphene and base body carbon are basically the same, and the overall graphitization degree of the material can be increased at a lower temperature due to doping of a graphitization catalyst-boron; boron and graphene are bonded together and a catalytic graphitization mechanism of boron is that the overall graphitization degree of the material is increased by making up dimensional structure defects in the carbon material, so that a new boron catalyst/base body carbon interface cannot be introduced in a boron doping process, but the compatibility and the bonding strength of base body carbon of the mesophase pitch and graphene can be effectively improved.
Owner:AEROSPACE RES INST OF MATERIAL & PROCESSING TECH +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products