Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

54 results about "Boron doped carbon" patented technology

Boron Doped Carbon Nanotubes are close analogues of carbon nanotubes (MWCNTs), but composed of hexagonal B-N bonding networks.

TiO2 mesoscopic crystal based trypsin photoelectrochemical detection method

The invention discloses a TiO2 mesoscopic crystal based trypsin photoelectrochemical detection method. According to the method, a polyethylenimine(PEI)-sensitized TiO2 octahedral anatase mesoscopic crystal is utilized as a photoactive substrate material, and a signal amplification function on the substrate material by boron-doped carbon quantum dot labeling peptide (B-CODs@petide) is utilized to prepare a photoelectrochemical sensor to be applied to trypsin detection. Based on the stability and excellent conductivity of PEI, PEI and OAM can be compounded to accelerate the transfer rate of photo-generated electrons and improve photocurrent signals; through the introductions of B-CODs with the competitive light capturing ability and space hampered peptide chains, the photocurrent signals can be significantly reduced; when a modified electrode is incubated in a trypsin solution, trypsin can conduct catalytic hydrolysis on peptide bonds, and B-CODs@petide can be released from the surface of the electrode, so as to improve the photocurrent signals; the photocurrent signals and the trypsin concentration are linear in the range of 1*10<-7> to 1.0 mg/mL. The method can be used for monitoring screening of various proteases and inhibitors in early diagnoses of different diseases.
Owner:FUJIAN NORMAL UNIV

Boron-doped carbon-base fluorescent nano material, and preparation method and application thereof

The invention discloses a boron-doped carbon-base fluorescent nano material, and a preparation method and application thereof. The surface B atom content of the nano material is 11.61%; and a hydrothermal process is utilized to prepare the boron-doped carbon-base (B-Cdots) fluorescent nano material which is used for detecting lead ions and copper ions. The simple hydrothermal synthesis process is adopted to synthesize the high-B-content B-Cdots fluorescent nano material, thereby effectively enhancing the B atom doping content, being beneficial to widening the application range of the carbon-base fluorescent material in environmental detection, solving the technical problem of demands for harsh experimental conditions by the synthesis of the B-doped nano material, and implementing the high-selectivity detection on heavy metal ions. The fluorescent experiment test indicates that the B-Cdots fluorescent nano material has favorable specific effects on Pb<2+> and Cu<2+>, and can implement high-sensitivity detection on the Pb<2+> and Cu<2+>. The product not only can be used for detecting heavy metal ions, but also can be used as a fluorescent probe for other fluorescent sensors and in the fields of pollutant treatment, preparation of fluorescent device materials and composite nano materials, and the like.
Owner:YANCHENG INST OF TECH

Boron-doped carbon nitride modified titanium dioxide composite photoelectrode and preparing method and application of boron doping carbon nitride modified titanium dioxide composite photoelectrode

The invention discloses a preparing method of a boron-doped carbon nitride modified titanium dioxide composite photoelectrode. The preparing method includes the following steps that a titanium source compound is added into hydrochloric acid dropwise, then conducting glass is inserted into a mixture for a hydrothermal reaction, then the conducting glass is taken out to be washed, dried, calcined and cooled to room temperature, and a TiO2 photo-anode is obtained; urea and boric acid are dissolved into deionized water to form modification liquid, the TiO2 photo-anode is steeped into the modification liquid to be died, calcined and cooled to room temperature, and the boron doping carbon nitride modified titanium dioxide composite photoelectrode is obtained. According to the preparing method, TiO2 grows to the surface of an FTO conducting glass material, then the surface of a semiconductor material is modified with boron-doped g-C3N4, an even modification layer is formed, the spectral absorption scope can be enlarged, the light capture rate is increased, photogenerated charge separation can be effectively promoted, and finally the photoelectrocatalysis water decomposition efficiency of the composite electrode is finally improved.
Owner:HUANGHE S & T COLLEGE

Preparation method of boron-doped p type carbon nanotube with high seebeck coefficient

The invention relates to a preparation method of a boron-doped p type carbon nanotube with a high seebeck coefficient. The preparation method comprises the following steps: carrying out boron doping onto the carbon nanotube under a high temperature by using B2O3 as a boron source, wherein atoms B in B2O3 and atoms C in the carbon nanotube generate the following replacement reaction: XB2O3<+>(2+3x) C (nanotubes) to 2BxC (nanotubes)+3xCO; and then, washing, filtering and drying to obtain the boron-doped carbon nanotube (BxC). Percentage of atoms B in the boron-doped carbon nanotube (BxC) can be remarkably increased by increasing a ratio of a reactant B2O3 to the carbon nanotube, and maximum value of x can reach 0.1. According to the preparation method disclosed by the invention, reaction steps are simple and controllable, thermo-electric effect of the boron-doped carbon nanotube is remarkably strengthened and seebeck coefficient is greatly increased; moreover, the greater the x value is, the more obvious the improved seebeck coefficient is. Internal current carriers of the prepared boron-doped carbon nanotube focus on p type current carriers, so that the seebeck coefficient can reach up to 24.05 mu V/K which is increased by about 35% in comparison with that of the original carbon nanotube. The boron-doped carbon nanotube prepared by the method disclosed by the invention can be widely applied to a novel thermoelectric energy material based on temperature difference power generation.
Owner:TONGJI UNIV

Preparation method of silicon-boron doped carbon quantum dots

The invention discloses a preparation method of silicon-boron doped carbon quantum dots. The preparation method includes following steps: adding hydrotalcite passing a sieve with 20-50 meshes into a trimethylsilyle sodium phenylborate solution of 0.1-1% in mass percent concentration according to a proportion that each gram of hydrotalcite corresponds to 1-1.5mmol of trimethylsilyle sodium phenylborate, stirring in constant-temperature water bath at 60-70 DEG C for 5-6h, aging for 12-24h, performing solid-liquid separation, using deionized water to wash precipitate for 2-3 times, and drying to obtain hydrotalcite modified by 4-trimethylsilyle sodium phenylborate; putting hydrotalcite in a vacuum tubular furnace, heating to 400-600 DEG C in a vacuum condition, vacuum calcining for 2-4h, and cooling to room temperature; adding powder after calcining into a hydrochloric acid solution of 20-40% in mass percent concentration according to a proportion that each gram of the powder corresponds to 10-15ml of the hydrochloric acid solution, stirring for 3-4h under protection of nitrogen, and centrifuging at a high speed after a hydrotalcite sheet layer is completely dissolved to obtain the silicon-boron doped carbon quantum dots. The preparation method is simple in material and mild in condition.
Owner:CHANGZHOU UNIV

Production method of boron doped carbon quantum dots

The invention discloses a production method of boron doped carbon quantum dots. The production method sequentially comprises the following steps: adding hydrotalcite which is sieved by a 20-50 mesh sieve to a sodium tetramethylborate solution with the mass percentage concentration of 0.1-1% according to a ratio of sodium tetramethylborate to hydrotalcite of 1-1.5 mol:1 g, stirring hydrotalcite and the sodium tetramethylborate solution in 60-70 DEG C constant temperature water bath for 5-6 h, ageing the obtained solution for 12-24 h, carrying out solid-liquid separation, washing the above obtained precipitate with deionized water 2-3 times, and drying the washed precipitate to obtain sodium tetramethylborate modified hydrotalcite; putting the sodium tetramethylborate modified hydrotalcite in a vacuum tubular furnace, heating the sodium tetramethylborate modified hydrotalcite under a vacuum condition to 400-600 DEG C, carrying out vacuum calcining for 2-4 h, and cooling the obtained calcined powder to room temperature; and adding the calcined powder to a hydrochloric acid solution with the mass percentage concentration of 20-40% according to ratio of 10-15 mL:1 g, stirring the calcined powder and the hydrochloric acid solution for 3-4 h until hydrotalcite sheets are completely dissolved, and carrying out high speed centrifuge in order to obtain the boron doped carbon quantum dots. The method has the advantages of simple materials and mild conditions.
Owner:CHANGZHOU UNIV

Porous boron-doped carbon-loaded platinum nanoparticle catalyst based on electrostatic spinning technology, and preparation method and application thereof

The invention discloses a porous boron-doped carbon-loaded platinum nanoparticle catalyst based on an electrostatic spinning technology, and a preparation method and application thereof. The preparation method of the catalyst comprises the following steps: adding a surfactant coated with platinum nanoparticles, a boron-containing compound and a high-molecular polymer into an organic solvent, and carrying out stirring at 60-80 DEG C for 2-4 hours to form a viscous mixed solution; transferring the obtained viscous mixed solution into an injector, and carrying out spinning under the conditions that a voltage is 14-18 kV and a propelling speed is 1-2.5 mL/h to obtain a blocky spun material; and oxidizing the obtained blocky spun material in an air atmosphere at 180-250 DEG C for 1-3 hours, andcarrying out high-temperature calcination on the obtained oxidized material in a high-purity gas atmosphere at 700-1000 DEG C for 2-4 hours so as to obtain the catalyst disclosed by the invention. The catalyst provided by the invention is low in preparation cost, has relatively high electrocatalytic activity and super-strong stability when applied to preparation of ozone through electrolysis of water, and obviously improves the current efficiency of the preparation of ozone through electrolysis of water.
Owner:ZHEJIANG UNIV OF TECH

Preparation method for carbon nanotube heterostructure

The invention relates to a preparation method for a carbon nanotube heterostructure. The method comprises the steps of: taking an Si sample as the anode and platinum as the cathode, electrolyzing the anode and cathode in an electrolyte solution formed by mixing of deionized water, ethanol absolute and hydrofluoric acid to form taper holes on the Si surface; synthesizing an Fe3O4 nanoparticle catalyst by a high temperature liquid phase technique; dissolving ferric acetylacetonate into oleic acid grease and diol, and carrying out high-temperature pyrolysis in a phenyl ether environment; dripping the prepared Fe3O4 nanoparticle solution on the porous silicon surface, and performing natural drying in the air; placing the well prepared porous silicon sample in a vacuum chamber, conducting base vacuum pumping and introducing H2, opening a microwave source to perform pretreatment, raising the temperature of the substrate to a predetermined temperature through a heating system and plasma bombardment together; after pretreatment, introducing CH4 and B2H6 gas to prepare a boron doped carbon nanotube; stopping introducing B2H6, and increasing the CH4 flow to prepare the pure carbon nanotube. The method provided by the invention is simple and is low in cost. The obtained heterostructure has stable performance, and stronger optical and electrical properties.
Owner:CHONGQING XUXING CHEM
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products