Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

42results about How to "Increase ORR activity" patented technology

Co@NC high-dispersion core-shell structure catalyst, and preparation method and application of catalyst

The invention discloses a Co@NC high-dispersion core-shell structure catalyst, and a preparation method and an application of the catalyst, and belongs to the technical field of energy source materials and electrochemistry. The preparation method of the catalyst comprises the steps of taking glucose as a C source, taking cyanoguanidine as a C-N source, taking Co(No3).6H2O as a Co source, and performing high temperature calcination. The cyanoguanidine performs high temperature decomposition to generate two-dimensional flaky g-C3N4; the glucose performs high temperature decomposition to generatea carbon intermediate and a metal species which are inserted into flakes of g-C3N4; and Co nanoparticles coated by an N-C layer in the catalyst are uniformly dispersed on a graphene carbon layer. Thecatalyst can serve as a cathode oxygen reduction electrocatalyst of a metal-air battery and a fuel battery. The catalyst is cheap and easy obtaining in raw material, and simple in preparation technology; amplification production is facilitated; in-situ decomposition of the cyanoguanidine provides rich N doped active sites for the catalyst; rich mesoporous structures are formed; the activity of the catalyst is improved; a channel is provided for transfer and transport of reaction participation substances in an ORR process; a mass transfer demand of a reaction process is met; and the catalyst is good in stability and high in methanol resistance.
Owner:DALIAN UNIV OF TECH

Co atom-doped polyhedral MOFs (Metal-Organic Frameworks) material as well as preparation method and application thereof

The invention provides a Co atom-doped polyhedral MOFs (Metal-Organic Frameworks) material as well as a preparation method and application thereof. The preparation method of the Co atom-doped polyhedral MOFs material comprises the following steps: adding dimethylimidazole, a zinc salt and a cobalt salt into a methanol solution to carry out a precursor synthesis reaction, and separating and drying a reaction product to obtain precursor powder; subjecting dicyandiamide to roasting treatment, and preparing g-C3N4 powder; grinding and uniformly mixing the precursor powder and the g-C3N4 powder to obtain mixed powder, and calcining the mixed powder in an inert atmosphere; subjecting a product obtained after calcination treatment to acid pickling with sulfuric acid, conducting solid-liquid separation, then drying, and obtaining the Co atom doped polyhedral MOFs material. The Co atom-doped polyhedral MOFs material prepared by the preparation method disclosed by the invention is relatively high in nitrogen content and relatively large in specific surface area, can be used as an electro-catalytic material of a zinc-air battery, and has more excellent electro-catalytic activity than a commercial 40% Pt / C catalyst.
Owner:ZHEJIANG UNIV OF TECH

Preparation method of Fe3C nanoparticle-loaded porous nitrogen-doped graphene oxygen reduction catalyst

The invention discloses a preparation method of a Fe3C nanoparticle-loaded porous nitrogen-doped graphene oxygen reduction catalyst. The preparation method comprises the following specific steps: mixing and stirring graphene oxide, ferroporphyrin and a hard template agent SiO2, and carrying out centrifugal drying to obtain a material A; transferring the material A to a nickel boat, placing the nickel boat in a tubular furnace, conducting heating to 700 DEG C at a heating rate of 10 DEG C / min under the protection of inert gas, carrying out heat preservation for 180 min, and naturally conducting cooling to room temperature to obtain a material B; and transferring the material B into a container, adding an acidic solution, conducting soaking for 24 hours, washing the filtrate with high-purity water until the filtrate is neutral, and conducting drying in a blast drying oven at 80 DEG C for 12 hours to obtain the Fe3C nanoparticle-loaded porous nitrogen-doped graphene oxygen reduction catalyst. By adding the hard template agent SiO2, the specific surface area of the material is regulated and controlled, the pore structure is enriched, and the active sites of the oxygen reduction catalyst are increased, so that the oxygen reduction catalytic activity is improved.
Owner:HENAN NORMAL UNIV

A serial continuous flow microbial fuel cell system and its preparation method and its application in degrading nitrobenzene wastewater

The invention belongs to the technical field of environmental protection water treatment and biological fuel cells, and provides a serial continuous flow microbial fuel cell system and preparation thereof in order to improve the limitation of nitrobenzene degradation rate of a single microbial fuel cell and improve the salinity of organic matter and power generation. The method and its application in degrading nitrobenzene wastewater are composed of two double-chamber microbial fuel cells MFC1 and MFC2. The anodes of MFC1 and MFC2 are left standing separately, and the cathodes are connected in series; the anode chamber and the cathode chamber are separated by an ion exchange membrane. On, the electrodes in the anode compartment and cathode compartment of MFC1 and MFC2 are Fe@Fe 2 O 3 / PANI / PEG modified carbon felt; a saturated calomel electrode is set in the cathode chamber as a reference electrode; the anode and cathode are connected to an external resistance of 1000Ω through copper wires to form a complete circuit loop, and a voltage collector is connected in parallel with the external resistance. The electron transfer and the mass transfer and throughput of the system are improved, and the performance and efficiency are improved.
Owner:TAIYUAN UNIV OF TECH

Cobalt-based oxygen reduction electro-catalytic material and preparation method thereof

The invention relates to a cobalt-based oxygen reduction electro-catalytic material and a preparation method thereof, and solves the problems of low catalytic activity, small catalytic active site density, low active site utilization rate, complicated preparation, high cost and the like of the existing non-noble metal ORR catalyst. ZIF-67 is used as a precursor, the coordination environment of a carbon-supported cobalt-based catalyst is accurately regulated and controlled through process parameters of carbonization and vulcanization processes, an electro-catalytic material which is mainly composed of Co-S-C, coexists with Co-N-C and Co-C and has a phase composition of Co1-xS is obtained, and the electro-catalytic activity of a single active site is remarkably enhanced. Moreover, cobalt atoms of the material are uniformly distributed in a carbon skeleton at high density, so that the density of active sites is improved; meanwhile, the material has a larger average pore size on the basis of high specific surface area, and the utilization rate of active sites is improved. The preparation method of the cobalt-based electrocatalyst is easy and convenient to operate, the consistency of synthetic materials is high, and the cobalt-based electrocatalyst has application and popularization value.
Owner:UNIV OF SCI & TECH BEIJING

A kind of fecx@nc core-shell structure catalyst and preparation method thereof

The invention relates to a FeCx@NC core-shell structured catalyst and a preparation method therefor. The FeCx@NC core-shell structured catalyst takes iron and FeCx nanoparticle mixture as the core, and takes nitrogen and FeCx-doped carbon as the shell, and has a mesoporous structure with a specific surface area of 500-900m<2>g<-1>. The preparation method for the core-shell structured catalyst comprises the steps of preparing a polyaniline and glucose composite material firstly; performing calcining for one time to prepare a Fe-N-C catalyst; and finally performing calcining for the second time to obtain the FeCx@NC catalyst. The catalyst is high in oxygen reduction activity and high in stability; the raw materials, such as the carbon source and the nitrogen source used by the preparation method are low in cost, so that the production cost for producing a Fe-N-C material by the conventional pyrolysis method can be lowered; meanwhile, the preparation method is simple and easy to implement; and in addition, the core-shell structured catalyst provided by the invention has relatively high electrocatalytic activity, and can be widely applied to the negative electrode catalyst of a proton exchange membrane fuel cell, an alkali negative ion exchange membrane fuel cell, and a metal air battery.
Owner:DALIAN UNIV OF TECH

A kind of n, s co-doped metal-free cns oxygen reduction catalyst and its preparation method

An N, S co-doped metal-free CNS oxygen reduction catalyst and a preparation method thereof belong to the technical field of energy materials and electrochemistry. The present invention uses glucose as carbon source, with g-C 3 N 4 As nitrogen source and soft template agent, polysulfide as sulfur source, three-dimensional porous carbon material catalyst was synthesized by hydrothermal-calcination two-step method. The obtained CNS catalyst is a three-dimensional porous graphene-like structure, and the surface contains a large number of pore structures. The ORR of the catalyst has an initial potential of 1.01V and a half-wave potential of 0.88V in an alkaline electrolyte, which is higher than that of a commercial Pt / C catalyst. Good catalytic performance. The invention has a large number of channels, which can expose more active sites, which is conducive to the transmission of ORR reaction substances and the improvement of the ORR catalytic activity of the material; the selected reagent has low toxicity, wide source of raw materials, low cost, and the preparation process is simple and convenient. Green and pollution-free, easy to scale up production, and conducive to large-scale application; it can be used in acidic and alkaline primary and secondary batteries involving ORR, such as fuel cells and metal-air batteries.
Owner:DALIAN UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products