Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1323results about "Treatment by combined electrochemical biological processes" patented technology

Bio-electrochemically assisted microbial reactor that generates hydrogen gas and methods of generating hydrogen gas

Systems and processes for producing hydrogen using bacteria are described. One detailed process for producing hydrogen uses a system for producing hydrogen as described herein, the system including a reactor. Anodophilic bacteria are disposed within the interior of the reactor and an organic material oxidizable by an oxidizing activity of the anodophilic bacteriais introduced and incubated under oxidizing reactions conditions such that electrons are produced and transferred to the anode. A power source is activated to increase a potential between the anode and the cathode, such that electrons and protons combine to produce hydrogen gas. One system for producing hydrogen includes a reaction chamber having a wall defining an interior of the reactor and an exterior of the reaction chamber. An anode is provided which is at least partially contained within the interior of the reaction chamber and a cathode is also provided which is at least partially contained within the interior of the reaction chamber. The cathode is spaced apart at a distance in the range between 0.1-100 centimeters, inclusive, from the anode. A conductive conduit for electrons is provided which is in electrical communication with the anode and the cathode and a power source for enhancing an electrical potential between the anode and cathode is included which is in electrical communication at least with the cathode. A first channel defining a passage from the exterior of the reaction chamber to the interior of the reaction chamber is also included.
Owner:PENN STATE RES FOUND +1

Bio-electrochemically assisted microbial reactor that generates hydrogen gas and methods of generating hydrogen gas

Systems and processes for producing hydrogen using bacteria are described. One detailed process for producing hydrogen uses a system for producing hydrogen as described herein, the system including a reactor. Anodophilic bacteria are disposed within the interior of the reactor and an organic material oxidizable by an oxidizing activity of the anodophilic bacteria is introduced and incubated under oxidizing reactions conditions such that electrons are produced and transferred to the anode. A power source is activated to increase a potential between the anode and the cathode, such that electrons and protons combine to produce hydrogen gas. One system for producing hydrogen includes a reaction chamber having a wall defining an interior of the reactor and an exterior of the reaction chamber. An anode is provided which is at least partially contained within the interior of the reaction chamber and a cathode is also provided which is at least partially contained within the interior of the reaction chamber. The cathode is spaced apart at a distance in the range between 0.1-100 centimeters, inclusive, from the anode. A conductive conduit for electrons is provided which is in electrical communication with the anode and the cathode and a power source for enhancing an electrical potential between the anode and cathode is included which is in electrical communication at least with the cathode. A first channel defining a passage from the exterior of the reaction chamber to the interior of the reaction chamber is also included.
Owner:PENN STATE RES FOUND +1

Polluted sediment ecological coverage carpet capable of inhibiting original algae from revival and growth and application method thereof

The invention provides a polluted sediment ecological coverage carpet capable of inhibiting original algae from revival and growth and an application method thereof, belonging to the field of sediment in-situ restoration and algae control of a eutrophied water body. The invention aims to solve the problems of ecological potential safety hazards, low restoration efficiency, incapability of reutilization and the like in the existing sediment coverage technique. The ecological coverage carpet comprises a thin fiber inverted filter layer, a biological-matrix combined restoration layer, a fabric layer, a quick connection hook, an embedded matrix frame, floaters, stay piles, a microcurrent electrolyzer, solar panels and electrodes. The application method comprises the following steps: analyzing the varieties of algae hypopuses and pollutants in the superficial deposit, selecting the restoration region, laying in the dormancy interval that blue algae do not revive to the water body, analyzing the pollutant content and adsorption characteristics of the adsorptive filter material in the embedded matrix frame, and determining whether to replace the filler or reap the plants. The carpet can be used in sediment improvement and ecological restoration in lakes, ponds, landscape water and other polluted water bodies.
Owner:CHANGJIANG RIVER SCI RES INST CHANGJIANG WATER RESOURCES COMMISSION

Microbial fuel cell based method for treatment and detection of chromium-containing electroplating wastewater

The invention discloses a microbial fuel cell based method for treatment and detection of chromium-containing electroplating wastewater. The steps include: 1) injecting anaerobic sludge and a sodium acetate solution into an anode chamber of a two-chambered microbial fuel cell to inoculate microorganisms, injecting a cathode liquid into a cathode chamber, and connecting resistance at the cathode and the anode to form a closed loop, reacting the cell in a thermotank, injecting sodium acetate into the anode chamber each day till the output voltage is stable; 2) changing the anode chamber solution to an oxygen removed anode liquid, and changing the cathode solution to chromium-containing wastewater; and 3) after starting, adjusting the pH value of wastewater, injecting the wastewater into the cathode chamber, connecting the external resistance and starting the treatment process. The method provided by the invention realizes no direct contact of microorganisms and hexavalent chromium, avoids poisoning of hexavalent chromium on microorganisms, and makes microbiological treatment of high concentration hexavalent chromium wastewater become possible. The standard redox potential of hexavalent chromium is 1.33V, the microbial fuel cell is utilized to treat hexavalent chromium wastewater, and the purposes of synchronous wastewater treatment and electric energy recovery are realized.
Owner:ZHEJIANG UNIV

Electrochemical microorganism autotrophic nitrogen removal sewage treatment method and system

The invention discloses an electrochemical microorganism autotrophic nitrogen removal sewage treatment method and system. The system comprises a microorganism electrolytic tank shell, a sealed cover, a microorganism positive electrode, a microorganism negative electrode and a power supply, wherein the sealed cover covers the microorganism electrolytic tank shell to form a closed space; the microorganism positive electrode and the microorganism negative electrode are connected with a negative electrode and a positive electrode of the power supply respectively, a short-distance nitrification microorganisms are enriched on the microorganism positive electrode, and denitrification methane anaerobic oxidation microorganisms are enriched on the microorganism negative electrode; the side, close to the microorganism positive electrode, of the microorganism electrolytic tank shell is provided with a water inlet, and the side, close to the microorganism negative electrode, of the microorganism electrolytic tank shell is provided with a water outlet. An inorganic carbon source put-in opening is formed in the position, close to the microorganism negative electrode, between the microorganism positive electrode and the microorganism negative electrode. By means of one electrolytic tank, short-distance nitrification, electrochemical methane production and methane anaerobic oxidation are effectively coupled, reaction mass transfer efficiency is accelerated, occupied area is small, and capital construction investment is small.
Owner:SHANDONG UNIV

Microbial fuel cell artificial wetland electrogenesis in-situ utilization water purification method

The invention discloses a microbial fuel cell artificial wetland electrogenesis in-situ utilization water purification method. A microbial fuel cell artificial wetland electrogenesis in-situ utilization water purification device is set up, sewage flows in from a water inlet pipe at the bottom, and flows upwards into the bottom of a bed body after passing through a water distributing area, an anaerobic environment of the bottom layer of the bed body forms an anode region of a microbial fuel cell artificial wetland, an electrogenesis microorganism oxidizing organic substrate releases electrons and protons, the electrons are conducted upwards to the surface layer of the bed body through conductive filler, the protons are conducted upwards to the surface layer of the bed body through the sewage, an aerobic/hypoxia region of the surface layer serves as a cathode region of the microbial fuel cell artificial wetland, oxygen or nitrogen oxide and the like serving as electron acceptors are subjected to an oxidation reaction, and output water after being treated flows out through a water outlet pipe. The problems that as the distance between the two poles of a microbial fuel cell artificial wetland of a traditional external circuit is too large, internal resistance is too large, the electrogenesis rate is low and the purification effect is poor, and purification performance is promoted.
Owner:GUILIN UNIVERSITY OF TECHNOLOGY

Autotrophic/heterotrophic denitrification-based integrated nitrogen removal apparatus and nitrogen removal method thereof

The invention discloses an autotrophic / heterotrophic denitrification-based integrated nitrogen removal apparatus and method, and belongs to the technical field of water treatment. A main reaction device is divided into an autotrophic denitrification area, a heterotrophic denitrification area and a buffer cavity. The device is provided with a liquid inlet, a liquid outlet and a gas outlet, and the liquid inlet is connected with the autotrophic denitrification area; the liquid outlet and the gas outlet are connected with the heterotrophic denitrification area; the device keeps the autotrophic denitrification area and the heterotrophic denitrification area mutually independent through the buffer cavity, and a micro-electrolysis filler layer and a sulfur / limestone filler layer are arranged in the autotrophic denitrification area; and a biomass vinasse layer is arranged in the heterotrophic denitrification area to improve the C / N ratio of wastewater and promote the heterotrophic denitrification nitrogen removal process. A solid-phase autotrophic denitrification coupled heterotrophic denitrification technology is adopted to remove nitrogen from the wastewater, so compared with routine single nitrogen removal technologies based on heterotrophic denitrification, the method disclosed in the invention has the advantages of high nitrogen removal efficiency, low cost and stable quality of outlet water.
Owner:NANJING UNIV +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products