Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1489 results about "Microbial fuel cell" patented technology

A microbial fuel cell (MFC), or biological fuel cell, is a bio-electrochemical system that drives an electric current by using bacteria and mimicking bacterial interactions found in nature. MFCs can be grouped into two general categories: mediated and unmediated. The first MFCs, demonstrated in the early 20th century, used a mediator: a chemical that transfers electrons from the bacteria in the cell to the anode. Unmediated MFCs emerged in the 1970s; in this type of MFC the bacteria typically have electrochemically active redox proteins such as cytochromes on their outer membrane that can transfer electrons directly to the anode. In the 21st century MFCs started to find a commercial use in wastewater treatment.

Sewage treatment process and apparatus for synchronous electrogenesis desalinisation

The invention belongs to the technical field of water resource processing, and in particular relates to a technology and a device for processing sewage from synchronous electricity generation and desalting, which comprises an anode chamber, an anion exchange membrane, a middle desalting chamber, a cation exchange membrane and a cathode chamber. An electric generation microorganism membrane is arranged on an anode. Sewage flows into the anode chamber and is removed by oxidization under the action of electric generation microorganisms, and electrons are conducted to the anode. Anions in the middle desalting chamber penetrate the anion exchange membrane to reach the anode, and cations penetrate the cation exchange membrane to reach the cathode to realize the desalting processing and form internal currents. The electrons reach the cathode by external circuit loading to generate reduction reaction to realize the electricity generation process. The internal currents of the microorganism fuel battery are used for sewage processing, electric generation and desalting. The technology of the invention is simple and easy to operate and has low energy consumption and high efficiency. The device is simple in structure and is convenient for industrial production and utilization.
Owner:TSINGHUA UNIV

Double-chamber alga microbial fuel cell and method thereof for treating waste water and realizing zero carbon emission

The invention discloses a double-chamber alga microbial fuel cell and a method thereof for treating waste water and realizing zero carbon emission, which relates to a microbial fuel cell and a method for treating waste water. The invention solves the problem that the traditional microbial fuel cell can generate a large amount of CO2 in the process of treating waste water. In the invention, a cation exchange membrane is vertically arranged in a box body of a reactor; an anode chamber and a cathode chamber are formed in the box body of the reactor; an anode is arranged in the anode chamber; a cathode is arranged in the cathode chamber; leads are connected with the anode and the cathode; one end of a gas duct is hermetically connected with a gas collecting chamber, and the other end of the gas duct is arranged at the bottom of the cathode chamber; and a gas collecting device is hermetically installed at a gas outlet. The method comprises the following steps: (1) starting the reactor; and (2) introducing the waste water into the cathode chamber and the anode chamber, catabolizing organic matters by microbes at room temperature, simultaneously obtaining electrical energy, and introducing the CO2 generated in the anode chamber into the cathode chamber to be used by the alga at the cathode for photosynthesis. The invention realizes zero emission of CO2 and simultaneously can recover electrical energy, thereby really changing waste into resources.
Owner:HARBIN INST OF TECH

Using knowledge pattern search and learning for selecting microorganisms

This invention is to use knowledge pattern learning and search system for selecting microorganisms to produce useful materials and to generate clean energy from wastes, wastewaters, biomass or from other inexpensive sources. The method starts with an in silico screening platform which involves multiple steps. First, the organisms' profiles are compiled by linking the massive genetic and chemical fingerprints in the metabolic and energy-generating biological pathways (e.g. codon usages, gene distributions in function categories, etc.) to the organisms' biological behaviors. Second, a machine learning and pattern recognition system is used to group the organism population into characteristic groups based on the profiles. Lastly, one or a group of microorganisms are selected based on profile match scores calculated from a defined metabolic efficiency measure, which, in term, is a prediction of a desired capability in real life based on an organism's profile. In the example of recovering clean energy from treating wastewaters from food process industries, domestic or municipal wastes, animal or meat-packing wastes, microorganisms' metabolic capabilities to digest organic matter and generate clean energy are assessed using the invention, and the most effective organisms in terms of waste reduction and energy generation are selected based on the content of a biowaste input and a desired clean energy output. By selecting a microorganism or consortia of multiply microorganisms using this method, one can clean the water and also directly generate electricity from Microbial Fuel Cells (MFC), or hydrogen, methane or other biogases from microorganism fermentation. In addition, using similar screening method, clean hydrogen can be recovered first from an anaerobic fermentation process accompanying the wastewater treatment, and the end products from the fermentation process can be fed into a Microbial Fuel Cell (MFC) process to generate clean electricity and at the same time treat the wastewater. The invention can be used to first select the hydrogenic microorganisms to efficiently generate hydrogen and to select electrogenic organisms to convert the wastes into electricity. This method can be used for converting wastes to one or more forms of renewable energies.
Owner:QUANTUM INTELLIGENCE

Metal-free nitrogen-doped functionalized mesoporous carbon catalyst and preparation method and applications thereof

InactiveCN103566961AHigh catalytic activityAvoid defects such as deactivation (corrosion)Physical/chemical process catalystsCell electrodesStrong acidsAcid washing
The invention relates to a metal-free nitrogen-doped functionalized mesoporous carbon catalyst and preparation method and applications thereof. A precursor of the metal-free nitrogen-doped functionalized mesoporous carbon catalyst comprises the following components in percentage by mass: 20-85% of template agent, 10-75% of nitrogen compound, and 5-50% of transition metal salt. The nitrogen compound is carbonized at high temperature under the existence condition of transition metal, to form a high-nitrogen-content pyridine and graphite nitrogen (Nx-C) composite structure, and the catalytic activity of oxygen can be remarkably enhanced; the transition metal in the nitrogen-doped mesoporous carbon catalyst can be removed through acid pickling, so that the inactivation (corrosion) of the catalyst containing the transition metal under the conditions of strong acid and strong alkali can be avoided, the characteristics of being high in stability, not easy to poison and the like can be achieved, and the metal-free nitrogen-doped functionalized mesoporous carbon catalyst has excellent application prospects in the fields of treating waste water of fuel batteries, metal-air batteries, supercapacitors, energy-storage batteries, microbial fuel cells, and the like.
Owner:DONGHUA UNIV

Bioelectrochemical film reactor device

The invention discloses a bioelectrochemical film reactor device which comprises an anode chamber, a cathode chamber, an ion selective permeating film, a conductive separating film and an outer resistor, wherein a water inlet pipe and a water outlet pipe are arranged on the anode chamber; graphite grains are filled in the anode chamber; electrogenic microorganisms are adhered to and grow on the surface of the graphite grains; the anode chamber is provided with graphite rod electrodes; the cathode chamber is sleeved outside the anode chamber; an aerating device is arranged at the bottom of thecathode chamber and is used for supplying oxygen to aerobic microorganisms; the ion selective permeating film is sleeved outside the anode chamber; the conductive separating film is sleeved outside the anode chamber; a clearance is kept between the conductive separating film and the anode chamber; and the outer resistor is serially connected to the graphite rod electrodes and the conductive separating film. In the bioelectrochemical film reactor device, a conductive film separating material is endowed with a double function of film filtration and cathode, and organic matters in wastewater arepartly degraded by anode microorganisms and are converted into electric energy and then are degraded again after entering into the cathode chamber, thereby realizing the wastewater treatment while recycling the electric energy from the process. The bioelectrochemical film reactor device has the advantages of an MBR (Membrane Bioreactor) and an MFC (Microbial fuel cell) and overcomes the defects of the MFC of low biomass and low quality of discharged water.
Owner:UNIV OF SCI & TECH OF CHINA

Method and device for simultaneously carrying out wastewater treatment and power generation by using photocatalysis associated microbial fuel cell technology

The invention discloses a method and a device for simultaneously carrying out wastewater treatment and power generation by using a photocatalysis associated microbial fuel cell technology. The device takes conductive glass coated with an n-type semiconductor photocatalyst film as an outside wall of a cathode chamber and takes conductive glass coated with an n-type semiconductor photocatalyst film as an outside wall of an anode chamber, a conductive filler respectively connected on the outside walls of the cathode chamber and the anode chamber is used as an electrode of a microbial fuel cell. The conductive filler is a carbon fiber rope for microbial growth. Denitrifying bacteria and nitrifying bacteria are respectively cultivated at the cathode and anode of the microbial fuel cell, and mainly used for the degradation of organic matters and the removal of ammonia nitrogen. Under the irradiation of ultraviolet light, electrons flow from the anode to the cathode, so that the anode has strong oxidability, and the cathode has strong reducibility. In the invention, the functions of microbial fuel cells and a photocatalysis technology are mutually associated, so that the wastewater treatment cost is low, and the generating capacity is large.
Owner:CHONGQING UNIV

Method for improving pollution resistance and flux of membrane by using weak electric field

The invention discloses a method for improving pollution resistance and flux of a membrane by using a weak electric field, which belongs to the technical field of membrane bioreactors (MBR) and is characterized in that: based on a principle that homo-polarity repels, a weak negative electric field is applied near a membrane face to increase resistance to pollutant and push the membrane pollutant away from the membrane surface and therefore has the effects of delaying the formation of a filter cake layer, increasing the pollution resistance of the membrane, improving the flux and prolonging a filtration operation period. The method is to use a conductive copper wire arranged in a plate type membrane component as a cathode or directly apply the weak negative electric field to a membrane material with the conductive property. The method has the advantages that: energy consumption is low, high-intensity electric field is avoided, and the operation is carried out in an intermittent way; the composition and metabolic characteristics of microbes are considerably influenced and the water treatment capability of the microbes is influenced; the method is convenient to implement, and power can be supplied by waste water, sludge and microbe fuels, so that additional energy consumption is avoided and water treatment capability is improved. Thus, the method has a very promising application prospect.
Owner:DALIAN UNIV OF TECH

Phycomycetes microbial fuel cell and preparation method and application of phycomycetes microbial fuel cell

The invention belongs to the technical field of biological fuel cells, and discloses a phycomycetes microbial fuel cell and a preparation method and application of the phycomycetes microbial fuel cell. The phycomycetes microbial fuel cell comprises an anode chamber, a cathode chamber, a transverse diaphragm, an anode, a cathode and an outer circuit, wherein phycomycetes, a culture solution and a carbon source are respectively installed in the anode chamber and the cathode chamber. In the operation process of the phycomycetes microbial fuel cell, operation is conducted by repeatedly converting the electrodes; in the whole operation process, with the help of synergistic effects of the phycomycetes, the effect that azo dye pollutants are degraded efficiently is achieved; the electrodes are alternately used for degrading the azo dye pollutants, therefore, the physiologically toxic effect on current-producing bacteria by the azo dye pollutants is eliminated, and continuous efficient current generation is realized; the phycomycetes is adopted as a biocatalyst for both the anode and the cathode, no metal catalyst is used for modification, no exogenous artificial mediator is added, aeration is not needed, therefore, the construction and operation cost of the microbial fuel cell is lowered, the sustainability of the microbial fuel cell is enhanced, and industrial amplified production of the microbial fuel cell can be conducted beneficially.
Owner:SOUTH CHINA UNIV OF TECH

Preparation method for graphene/ conductive polymer anode for microbial fuel cell

The invention discloses a preparation method for a graphene/ conductive polymer anode for a microbial fuel cell. The preparation method comprises the following steps: conductive polymer monomers and an aqueous suspension of graphene oxides are mixed, stirred at room temperature and subjected to ultrasonic treatment; by employing a constant voltage electroplating method, conductive polymer monomer/graphene oxide conductive composites are subjected to electrochemical polymerization and deposited on a surface of an anode; by employing a cyclic voltammetry, after situ electroreduction, a conductive polymer/electrochemical reduction graphene oxide modified anode is prepared on the electrode. The conductive polymer/electrochemical reduction graphene oxide modified anode is washed with deionized water and dried in the air at room temperature to prepare a graphene/ conductive polymer anode for a microbial fuel cell. Compared to traditional chemical modification methods, the preparation method reduces the usage of toxic reagents and cumbersome processes, lowers the preparation cost, and is easy to realize industrialization of electrode preparation. When the modified electrode is used for a cell, the electricity generation capacity of a microbial fuel cell is raised observably, and the development and application of a microbial fuel cell can be promoted.
Owner:SOUTH CHINA UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products