Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

8609results about "Catalytic reactions" patented technology

Olefin metathesis reaction catalyst and preparation method therefor

The present invention relates to an olefin metathesis reaction catalyst where rhenium (Re) oxide or molybdenum (Mo) oxide is supported, as a catalyst main component, on a surface-modified mesoporous silica or mesoporous alumina support, and a preparation method therefor. The olefin metathesis reaction catalyst of the present invention allows highly efficient metathesis of long-chain unsaturated hydrocarbons having at least eight carbons at a low temperature of 150° C. or lower. The catalyst can be separated readily from reaction solution, regenerated at a low temperature of 400° C. or lower by removing toxins accumulated on it during the metathesis reaction, and used repeatedly in metathesis reaction many times, thereby being made good use in commercial olefin metathesis processes.
Owner:KOREA RES INST OF CHEM TECH

Catalyst and process of paraffin hydrocarbon conversion

A catalyst composition and process for the conversion of linear and / or branched paraffin hydrocarbons based on the use of an ionic liquid catalyst in combination with a Brønsted Acid, which provides a catalytic composition with an increased activity compared with said ionic liquid. Under suitable reaction conditions this conversion is leading to paraffin hydrocarbon fraction with higher octane number.
Owner:HALDOR TOPSOE AS

Plasmonic assisted systems and methods for interior energy-activation from an exterior source

A method and a system for producing a change in a medium disposed in an artificial container. The method places in a vicinity of the medium at least one of a plasmonics agent and an energy modulation agent. The method applies an initiation energy through the artificial container to the medium. The initiation energy interacts with the plasmonics agent or the energy modulation agent to directly or indirectly produce the change in the medium. The system includes an initiation energy source configured to apply an initiation energy to the medium to activate the plasmonics agent or the energy modulation agent.
Owner:DUKE UNIV +1

Copper-catalysed ligation of azides and acetylenes

A copper catalyzed click chemistry ligation process is employed to bind azides and terminal acetylenes to provide 1,4-disubstituted 1,2,3-triazole triazoles. The process comprises contacting an organic azide and a terminal alkyne with a source of reactive Cu(I) ion for a time sufficient to form by cycloaddition a 1,4-disubstituted 1,2,3-triazole. The source of reactive Cu(I) ion can be, for example, a Cu(I) salt or copper metal. The process is preferably carried out in a solvent, such as an aqueous alcohol. Optionally, the process can be performed in a solvent that comprises a ligand for Cu(I) and an amine.
Owner:TETARD INC

High activity metal carbene metathesis catalysts generated using a thermally activated N-heterocyclic carbene precursor

The invention provides a method for converting a less active or slower to initiate system to a higher activity system so that at the end of a polymerization the most active species is present in the system. The invention generally relates to a process for converting a less active or slower to initiate catalyst system to a higher activity catalyst system wherein the process comprises contacting a protected N-heterocyclic carbene with a metathesis catalyst and an olefin in the presence of energy. One of the benefits of the invention is that the amount of catalyst required is less than or lowered in the presence of the protected N-heterocyclic carbene as compared to the amount of catalyst required in the absence of the protected N-heterocyclic carbene. The protected N-heterocyclic carbene can be unsaturated or saturated. In addition, the invention describes novel ruthenium initiators and methods of making the same.
Owner:CALIFORNIA INST OF TECH +1

Catalyst composition of ethylene oligomerization and the application

The present invention relates to catalyst composition for oligomerizing ethylene and its application. The catalyst composition includes complex of acetylacetone chromium, tetrahydrofuran chromium chloride and / or chromium isooctanate; ligand containing P and N; activator of methyl aluminoxane, ethyl aluminoxane, propyl aluminoxane and / or butyl aluminoxane; and promoter of X1R6X2, where, each of X1 and X2 is F, Cl, Br, I or alkoxyl, and R6 is alkyl or aryl group; with the molar ratio of the complex, the ligand, the activator and the promoter being 1 to 0.5-10 to 50-3000 to 0.5-10. The catalyst composition is used in oligomerizing reaction of ethylene to prepare 1-octene, and has high catalytic activity and high 1-octene selectivity.
Owner:PETROCHINA CO LTD

Tetramerization of olefins

The invention describes a process for tetramerisation of olefins wherein the product stream of the process contains more than 30% of the tetramer olefin. The process includes the step of contacting an olefinic feedstream with a catalyst system containing a transition metal compound and a heteroatomic ligand.
Owner:SASOL TEKHNOLODZHI PROPRIEHJTEHRI LTD

Oligomerization of alpha olefins using metallocene-ssa catalyst systems and use of the resultant polyalphaolefins to prepare lubricant blends

This disclosure provides for alpha olefin oligomers and polyalphaolefins (or PAOs) and methods of making the alpha olefin oligomers and PAOs. This disclosure encompasses metallocene-based alpha olefin oligomerization catalyst systems, including those that include at least one metallocene and an activator comprising a solid oxide chemically-treated with an electron withdrawing anion. The alpha olefin oligomers and PAOs prepared with these catalyst systems can have a high viscosity index combined with a low pour point, making them particularly useful in lubricant compositions and as viscosity modifiers.
Owner:CHEVRON PHILLIPS CHEMICAL CO LP

Chelating carbene ligand precursors and their use in the synthesis of metathesis catalysts

Chelating ligand precursors for the preparation of olefin metathesis catalysts are disclosed. The resulting catalysts are air stable monomeric species capable of promoting various metathesis reactions efficiently, which can be recovered from the reaction mixture and reused. Internal olefin compounds, specifically beta-substituted styrenes, are used as ligand precursors. Compared to terminal olefin compounds such as unsubstituted styrenes, the beta-substituted styrenes are easier and less costly to prepare, and more stable since they are less prone to spontaneous polymerization. Methods of preparing chelating-carbene metathesis catalysts without the use of CuCl are disclosed. This eliminates the need for CuCl by replacing it with organic acids, mineral acids, mild oxidants or even water, resulting in high yields of Hoveyda-type metathesis catalysts. The invention provides an efficient method for preparing chelating-carbene metathesis catalysts by reacting a suitable ruthenium complex in high concentrations of the ligand precursors followed by crystallization from an organic solvent.
Owner:UMICORE AG & CO KG

Process for the preparation of a nickel/phosphorous ligand catalyst for olefin hydrocyanation

A process for preparing a hydrocyanation catalyst comprising contacting a bidentate phosphorous-containing ligand with a molar excess of nickel chloride in the presence of a nitrile solvent and a reducing metal which is more electropositive than nickel. Preferably, the nickel chloride is dried before use.
Owner:INVISTA NORTH AMERICA R L

Recyclable ruthenium catalysts for metathesis reactions

The invention relates to novel carbene ligands and their incorporated monomeric and resin / polymer linked ruthenium catalysts, which are recyclable and highly active for olefin metathesis reactions. It is disclosed that significant electronic effect of different substituted 2-alkoxybenzylidene ligands on the catalytic activity and stability of corresponding carbene ruthenium complexes, some of novel ruthenium complexes in the invention can be broadly used as catalysts highly efficient for olefin metathesis reactions, particularly in ring-closing (RCM), ring-opening (ROM), ring-opening metathesis polymerization (ROMP) and cross metathesis (CM) in high yield. The invention also relates to preparation of new ruthenium complexes and the use in metathesis.
Owner:ZANNAN SCITECH

Functionalized ionic liquids, and methods of use thereof

One aspect of the present invention relates to ionic liquids comprising a pendant Bronsted-acidic group, e.g., a sulfonic acid group. Another aspect of the present invention relates to the use of an ionic liquid comprising a pendant Bronsted-acidic group to catalyze a Bronsted-acid-catalyzed chemical reaction. A third aspect of the present invention relates to ionic liquids comprising a pendant nucleophilic group, e.g., an amine. Still another aspect of the present invention relates to the use of an ionic liquid comprising a pendant nucleophilic group to catalyze a nucleophile-assisted chemical reaction. A fifth aspect of the present invention relates to the use of an ionic liquid comprising a pendant nucleophilic group to remove a gaseous impurity, e.g., carbon dioxide, from a gas, e.g., sour natural gas.
Owner:UNIV OF SOUTH ALABAMA

Alkane and alkane group dehydrogenation with organometallic catalysts

Novel polynuclear organometallic complexes useful as catalysts for the reversible deshydrogenation of alkanes and alkane group are disclosed. The novel compounds comprise a first transition, a second transition metal p-bonded to an ?5-aromatic ligand, and a pincer ligand. The pincer ligand comprises a 6p-electron aromatic ring having at least 2 ring atoms in an 1, 3 relationship bonded each to a neutral Lewis base through a bridge, the bridge being a diradical. The pincer ligand binds the first transition metal through each of the Lewis bases and through the ring atom adjacent to both Lewis bases and p-coordinates the second transition metal through all aromatic ring atoms. The first transition metal may also bond to 2 or 4 hydrogen atoms.
Owner:POWERNOVA TECH

Catalyst systems for ethylene oligomerisation to linear alpha olefins

A catalyst system comprising:(a) one or more bisarylimino pyridine iron or cobalt catalysts;(b) a first co-catalyst compound which is selected from aluminium alkyls, aluminoxanes, and mixtures thereof; and(c) a second co-catalyst compound which comprises one or more compounds of the formula ZnR′2 wherein each R′, which may be the same or different, is selected from hydrogen, optionally substituted C1–C20 hydrocarbyl, phenyl, Cl, Br, I, SR″, NR″2, OH, OR″, CN, NC wherein R″, which within the same molecule may the same or different, is C1–C20 hydrocarbyl.
Owner:SHELL OIL CO

Tetramerization of olefins

The invention describes a process for tetramerisation of olefins wherein the product stream of the process contains more than 30% of the tetramer olefin. The process includes the step of contacting an olefinic feedstream with a catalyst system containing a transition metal compound and a heteroatomic ligand.
Owner:SASOL TEKHNOLODZHI PROPRIEHJTEHRI LTD

Catalysts for olefin polymerization or oligomerization

Novel iron and cobalt complexes of certain novel tricyclic ligands containing a “pyridine” ring and substituted with two imino groups are polymerization and / or oligomerization catalysts for olefins, especially ethylene. Depending on the exact structure of the ligand, and polymerization process conditions, products ranging from α-olefins to high polymers may be produced. The polymers, especially polyethylenes, are useful for films and as molding resins.
Owner:DUPONT POLYMERS INC

Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.
Owner:MATERIA

Catalysts for metathesis reactions including enantioselective olefin metathesis, and related methods

The present invention provides compositions comprising metal complexes, and related methods. In some embodiments, metal complexes of the invention may be useful as catalysts for chemical reactions, including metathesis reactions, wherein the catalysts exhibit enhanced activity and stereoselectivity. In some embodiments, the invention may advantageously provide metal complexes comprising a stereogenic metal atom. Such metal complexes may be useful in enantioselective catalysis.
Owner:BOSTON COLLEGE +1

Carbon nanotube adducts and methods of making the same

The invention provides an adduct comprising a carbon nanotube and a transitional metal coordination complex, wherein the metal of the complex is attached by a covalent linkage to at least one oxygen moiety on the nanotube.
Owner:THE RES FOUND OF STATE UNIV OF NEW YORK

Low-Odor Catalyst for Isocyanate-Derived Foams and Elastomers

Provided herein are catalysts useful in providing foam products which are produced using an organic poly isocyanate as a starting material. A catalyst according to the present invention includes the tris-(hydroxyethyl)methyl ammonium cation, and optionally potassium cation, in combination with a variety of possible counter anions present to maintain charge balance and for compatibility. A catalyst according to the invention is preferably used in conjunction with one or more conventional tertiary amine catalysts in a foam producing process. The foams may be polyurethane foams, polyisocyanurate foams, flexible foams, or elastomeric foams.
Owner:HUNTSMAN PETROCHEMICAL LLC

Use of a phosphorus containing ligand and a cyclic organic ligand in a transition metal compound

According to the present invention there is provided a compound in the form of a transition metal compound including a transition metal, a phosphorus containing ligand, and a cyclic organic ligand. The phosphorus containing ligand is a heterocyclic organic compound with a ligating phosphorus atom which ligates with the transition metal, and which ligating phosphorus atom is an atom in the heterocyclic ring structure of the heterocyclic organic compound. The cyclic organic ligand is a cyclic organic compound with a ligating carbon atom in the cyclic ring structure of the cyclic organic compound which ligates with the transition metal by means of a double bound. The invention also relates to a method preparing such a compound and a metathesis reaction wherein such a compound is used as a catalyst.
Owner:UMICORE AG & CO KG

Method of Making Hydroprocessing Catalyst

A chelated hydroprocessing catalyst exhibiting low moisture is obtained by hearing an impregnated, calcined carrier to a temperature higher than 200° C. and less than a temperature and for a period of time that would cause substantial decomposition of the chelating agent.
Owner:ADVANCED REFINING TECH

Tetramerization

A new P-N-P ligand is useful in ethylene oligomerizations. In combination with i) a source of chromium and ii) an activator such as methylalumoxane; the ligand of this invention may be used to prepare an oligomer product that contains a mixture of hexenes and octenes. The hexenes and octenes produced with this ligand contain very low levels of internal olefins when produced under preferred reaction conditions.
Owner:NOVA CHEM (INT) SA

Regeneration of ionic liquid catalyst by hydrogenation using a supported catalyst

A process for regenerating a used acidic ionic liquid catalyst comprising the steps of contacting the used ionic liquid catalyst and hydrogen with a supported hydrogenation catalyst comprising a hydrogenation component on a support in a reaction zone under hydrogenation conditions for a time sufficient to increase the activity of the used catalyst is disclosed.
Owner:CHEVROU USA INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products