Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

473 results about "Biodiesel production" patented technology

Biodiesel production is the process of producing the biofuel, biodiesel, through the chemical reactions of transesterification and esterification. This involves vegetable or animal fats and oils being reacted with short-chain alcohols (typically methanol or ethanol). The alcohols used should be of low molecular weight. Ethanol is the most used because of its low cost, however, greater conversions into biodiesel can be reached using methanol. Although the transesterification reaction can be catalyzed by either acids or bases, the base-catalyzed reaction is more common. This path has lower reaction times and catalyst cost than those acid catalysis. However, alkaline catalysis has the disadvantage of high sensitivity to both water and free fatty acids present in the oils.

Synthetic and biologically-derived products produced using biomass produced by photobioreactors configured for mitigation of pollutants in flue gases

Certain embodiments and aspects of the present invention relate to photobioreactor apparatus designed to contain a liquid medium comprising at least one species of photosynthetic organisms therein, and to methods of using the photobioreactor apparatus as part of a production process for forming an organic molecule-containing product, such as a polymeric material and/or fuel-grade oil (e.g. biodiesel), from biomass produced in the photobioreactor apparatus. In certain embodiments, the disclosed organic molecule/polymer production systems and methods, photobioreactor apparatus, methods of using such apparatus, and/or gas treatment systems and methods provided herein can be utilized as part of an integrated combustion and polymer and/or fuel-grade oil (e.g. biodiesel) production method and system, wherein photosynthetic organisms utilized within the photobioreactor are used to at least partially remove certain pollutant compounds contained within combustion gases, e.g. CO2 and/or NOx, and are subsequently harvested from the photobioreactor, processed, and utilized as a source for generating polymers and/or organic molecule-containing products (e.g. fuel-grade oil (e.g. biodiesel)) and/or as a fuel source for a combustion device (e.g. an electric power plant generator and/or incinerator).
Owner:GREENFUEL TECHNOLOGIES CORPORATION

Biomass energy prepared by one-step method of microalgae

The invention provides a method for preparing biodiesel from microalgae. The method comprises the following steps of: a. changing collected microalgae from the wet algae into algae block or algae powder; b. mixing a catalyst into low-carbon alcohol, directly adding the algae block or the algae powder obtained by the step a, and carrying out ester exchange reaction to prepare the biodiesel; c. after the reaction is stopped, adding an organic solvent for extracting reaction solution which is divided into organic solvent phase used for extraction, low-carbon alcohol water-adding phase and algae mud; and d. after the extraction is completed, collecting the organic solvent phase used for extraction, removing the organic solvent by distillation, and obtaining oily liquid, namely crude products of the biodiesel. After preparing the biodiesel, the steps that the low-carbon alcohol water-adding phase is used circularly after dewatered by a solid drying agent, and the produced algae mud is used for producing biogas by biological fermentation are added. The invention completes the oil extraction of microalgae and biodiesel production by one step, simplifies the technique steps and equipment, saves cost; the sulphuric acid and low-carbon alcohol used for production can be recovered, then dewatered by drying, then utilized repeatedly, the cost is reduced, the final product is neutral, does not need washing and reduces the downstream processing pressure; and simultaneously, chlorophyll is mainly concentrated in the low-carbon alcohol, reduces the interference of the chlorophyll to the color of the product and does not need the step of decoloring.
Owner:ENN SCI & TECH DEV

Biodiesel purification by a continuous regenerable adsorbent process

A quick, economical and environmentally friendly, “green”, process for the continuous purification of biodiesel (fatty acid alkyl esters (FAAE)) is described using a powdered, granulated or extruded adsorbent. The adsorbent is contained in a column system and is regenerated for reuse multiple times. The process employs an adsorbent such as, but not limited to, carbon, silica, clay, zeolite or a metal silicate contained in a column to remove the impurities from fatty acid alkyl esters (FAAE) or crude biodiesel in a continuous process. The process utilizes the adsorbent column system for the purification of biodiesel, rather than water or filtration, to remove soaps and other impurities entrained in a crude biodiesel. The crude biodiesel is contacted with an adsorbent packed into a column, or multiple columns in series, for a sufficient amount of time to remove impurities such as, but not limited to, soaps, metals, free glycerin, sterol glucosides and many of the other impurities that reduce the stability of biodiesel. The resulting finished biodiesel exiting the column(s) is ready for the methanol recovery process. Once the adsorbent no longer removes the desired amount of impurities, it is regenerated for reuse. The solvent used for the regeneration process is reclaimed and reused by recycling it back to the transesterification reaction.
Owner:DALLAS GROUP OF AMERICA

Method for producing biodiesel by using tallowseed oil and special solid catalyst thereof

The invention belongs to the biodiesel preparation technical field, in particular to a method for producing the biodiesel by tallow seed oil and a special magnetic nanometer difunctional solid catalyst suitable for the method. The invention is characterized in that: the tallow seed oil and a low-carbon alcohol are put in a reaction system and react under the catalysis of the catalyst; wherein the catalyst is magnetic nanometer solid acid or/and alkali with the particle size of 30-200nm, the low-carbon alcohol is methyl alcohol, and the reaction is esterification and/or ester exchange reaction; the usage of the catalyst is 1-8% of the weight of the tallow seed oil, the alcohol/oil mol ratio is maintained to be 5-45:1, and the reaction temperature is 60-180 DEG C; the reaction lasts 1-10h at normal pressure, glycerol is separated, the methyl alcohol is evaporated out, so that the prepared biodiesel is neutral. With the invention adopted, the magnetic nanometer difunctional solid catalyst having the advantages of high activity, good intensity, long service life and good regenerability is obtained; in addition, the post process of biodiesel production is simple, the yield is high, thus meeting the production requirement of environmental protection.
Owner:HUAZHONG AGRI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products