Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

31 results about "Resistant infection" patented technology

Particles for Treatment of Pulmonary Infection

Formulations have been developed to treat or reduce the spread of respiratory infections, especially chronic or drug resistant infections, particularly tuberculosis (TB), severe acute respiratory syndrome (SARS), meningococcal meningitis, Respiratory syncytial virus (RSV), influenza, and small pox. Formulations include a drug or vaccine in the form of a microparticle, nanoparticle, or aggregate of nanoparticles, and, optionally, a carrier, which can be delivered by inhalation. Giving the drugs via an inhaler sidesteps the problems associated with oral or injectable drugs by bypassing the stomach and liver, and delivering the medication directly into the lungs. In one embodiment, the particle containing the agent is a large porous aerosol particle (LPPs). In another embodiment, the particles are nanoparticles, which can be administered as porous nanoparticle aggregates with micron diameters that disperse into nanoparticles following administration. Optionally, the nanoparticles are coated, such as with a surfactant or protein coating. The formulation may be administered as a powder or administered as a solution or via an enteral or non-pulmonary parenteral route of administration. The formulation is preferably administered as a pulmonary formulation. In the preferred embodiment for treatment of TB, the vaccine is a BCG vaccine that is stable at room temperature, or is an antibiotic effective against TB, such as capreomycin or PA-824, loaded at a very high percentage into the microparticles or nanoparticles. In one embodiment, a patient is treated with formulations delivering both antibiotic and vaccine.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Application of agastache rugosus volatile oil to suppression of growth of drug-resistant escherichia coli

ActiveCN106138197AGrowth inhibitionMitigate or resolve drug-resistant infectionsAntibacterial agentsOrganic active ingredientsEscherichia coliBiofilm
The invention discloses application of agastache rugosus volatile oil to suppression of growth of drug-resistant escherichia coli. A single chemical component, i.e. pulegone, is obtained from an agastache rugosus volatile oil to achieve a better in vitro suppression effect on the growth of human-derived drug-resistant escherichia coli, i.e. human-derived ESBLs-producing escherichia coli. The application has the beneficial effects that the first research on the effect of the agastache rugosus volatile oil on the drug-resistant escherichia coli finds that the growth of the drug-resistant escherichia coli can be suppressed; a main component serving as a drug-resistant suppressing agent is screened from the agastache rugosus volatile oil and then researched; data show that the main monomer component, i.e. the pulegone, of the agastache rugosus volatile oil can suppress the growth of the ESBLs-producing escherichia coli and affect the formation of a biofilm so as to relieve or avoid the drug-resistant infection of the escherichia coli and reduce the fatality rate; a new idea is brought up to solve and treat the human-derived ESBLs-producing escherichia coli; and the application has a great research significance.
Owner:XINJIANG MEDICAL UNIV

Composition, Preparation Method And Evaluation Of A Complex Immunogen Named I-SPGA For Production Of Immunological Active Proteins (IAP)

The present invention relates to the composition and method of preparing an immunogen designated as I-spga consisting of a complex antigen prepared from 18 to 26 species of pathogenic microorganisms isolated from patients, inactivated with binary ethyleneamine (BEI) and formalin, diluted in a SPGA immunopotentiator mixed with QS-21 adjuvant. By inoculating the hens with the I-spga immunogen, hyperimmune eggs (Immunospga) are obtained which contain immunologically active proteins specific to the 18-26 antigens used for immunization. The immune response of the hens is specific to the used antigens by amplification of the antigenic signal by the SPGA immunopotentiator and due to a special immunization program that allows the immune system to act complex and intense: The I-spga complex antigen contains 18-26 microorganisms isolated from patients, bacterial bodies, components from bodies obtained by ultrasonography, cilia, exotoxins, endotoxins, spores, viruses, fungi or yeasts. This pathogenic material is inactivated with BEI and formalin. The I-spga antigen is of three types. The standard I-spga antigen is composed of 18 to 24 antibiotic-resistant bacterial species isolated from patients in Romania. The specific I-spga complex antigen is composed of the I-spga complex antigen containing a mixture of 7-9 strains from a single species of bacteria, fungi or yeasts isolated from patients in Romania mixed with SPGA and QS-21, used for inoculation of hens previously immunized with standard I-spga antigen. The personalized I-spga antigen is composed of patient-derived pathological material containing cellular debris and pathogenic germs inactivated with BEI and formalin and mixed with SPGA and QS-21 and is used to immunize hens previously immunized with the standard I-spga antigen. This now patented technology encompasses a new generation of biological products in which the immune response of the hens to different groups of parenterally inoculated antigens at different time intervals is overlapping. Chicken response is uniform and additional administration of immunogens and SPGA as an immunopotentiator amplifies the antigenic signal and immune response. The I-spga immunogen as well as the immune response contain two markers, G and A, which identify the I-spga antigen used for immunization against the antigens used to produce the Imunoinstant group bio-preparations or similar products. The I-spga immunogen is used to immunize the hens for obtaining immunologically active proteins that can be used to treat immune deficiencies, psoriasis, epidermolysis bullosa, other dermatitises, nosocomial infections, antibiotic-resistant infections in the urinary system of children and grownups.
Owner:FANTANA RAUL SORIN +1

Particles for treatment of pulmonary infection

Formulations have been developed to treat or reduce the spread of respiratory infections, especially chronic or drug resistant infections, particularly tuberculosis (TB), severe acute respiratory syndrome (SARS), meningococcal meningitis, Respiratory syncytial virus (RSV), influenza, and small pox. Formulations include a drug or vaccine in the form of a microparticle, nanoparticle, or aggregate of nanoparticles, and, optionally, a carrier, which can be delivered by inhalation. Giving the drugs via an inhaler sidesteps the problems associated with oral or injectable drugs by bypassing the stomach and liver, and delivering the medication directly into the lungs. In one embodiment, the particle containing the agent is a large porous aerosol particle (LPPs). In another embodiment, the particles are nanoparticles, which can be administered as porous nanoparticle aggregates with micron diameters that disperse into nanoparticles following administration. Optionally, the nanoparticles are coated, such as with a surfactant or protein coating. The formulation may be administered as a powder or administered as a solution or via an enteral or non-pulmonary parenteral route of administration. The formulation is preferably administered as a pulmonary formulation. In the preferred embodiment for treatment of TB, the vaccine is a BCG vaccine that is stable at room temperature, or is an antibiotic effective against TB, such as capreomycin or PA-824, loaded at a very high percentage into the microparticles or nanoparticles. In one embodiment, a patient is treated with formulations delivering both antibiotic and vaccine.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Composition, preparation method and evaluation of a complex immunogen named I-SPGA for production of immunological active proteins (IAP)

The present invention relates to the composition and method of preparing an immunogen designated as I-spga consisting of a complex antigen prepared from 18 to 26 species of pathogenic microorganisms isolated from patients, inactivated with binary ethyleneamine (BEI) and formalin, diluted in a SPGA immunopotentiator mixed with QS-21 adjuvant. By inoculating the hens with the I-spga immunogen, hyperimmune eggs (Immunospga) are obtained which contain immunologically active proteins specific to the 18-26 antigens used for immunization. The immune response of the hens is specific to the used antigens by amplification of the antigenic signal by the SPGA immunopotentiator and due to a special immunization program that allows the immune system to act complex and intense: The I-spga complex antigen contains 18-26 microorganisms isolated from patients, bacterial bodies, components from bodies obtained by ultrasonography, cilia, exotoxins, endotoxins, spores, viruses, fungi or yeasts. This pathogenic material is inactivated with BEI and formalin. The I-spga antigen is of three types. The standard I-spga antigen is composed of 18 to 24 antibiotic-resistant bacterial species isolated from patients in Romania. The specific I-spga complex antigen is composed of the I-spga complex antigen containing a mixture of 7-9 strains from a single species of bacteria, fungi or yeasts isolated from patients in Romania mixed with SPGA and QS-21, used for inoculation of hens previously immunized with standard I-spga antigen. The personalized I-spga antigen is composed of patient-derived pathological material containing cellular debris and pathogenic germs inactivated with BEI and formalin and mixed with SPGA and QS-21 and is used to immunize hens previously immunized with the standard I-spga antigen. This now patented technology encompasses a new generation of biological products in which the immune response of the hens to different groups of parenterally inoculated antigens at different time intervals is overlapping. Chicken response is uniform and additional administration of immunogens and SPGA as an immunopotentiator amplifies the antigenic signal and immune response. The I-spga immunogen as well as the immune response contain two markers, G and A, which identify the I-spga antigen used for immunization against the antigens used to produce the Imunoinstant group bio-preparations or similar products. The I-spga immunogen is used to immunize the hens for obtaining immunologically active proteins that can be used to treat immune deficiencies, psoriasis, epidermolysis bullosa, other dermatitises, nosocomial infections, antibiotic-resistant infections in the urinary system of children and grownups.
Owner:FANTANA RAUL SORIN +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products