Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

34 results about "Solution phase synthesis" patented technology

Metallic oxide/N-doped carbon nano tube as well as preparation method and application thereof

The invention discloses a preparation method of a metallic oxide/N-doped carbon nano tube composite material. The preparation method comprises the following steps of: (1) ultrasonically dispersing an N-doped carbon nano tube in a mixed solution of water and alcohol to obtain a solution A; (2) under the condition of stirring, dripping a solution B into the solution A, and stirring to obtain a mixed solution, wherein the solution B is water and/or alcoholic solution containing metal ions; and (3) carrying out solid-liquid separation on the mixed solution, and washing, drying and roasting to obtain the metallic oxide/N-doped carbon nano tube composite material. The invention also provides the composite material obtained through the method and an application thereof. According to the preparation method disclosed by the invention, as a method of solution phase synthesis under the condition of room temperature is adopted, hydrothermal reaction and solvothermal reaction with high temperature and high pressure are avoided, and the composite material with tighter combination of the metallic oxnide and the /N-doped carbon nano tube can be obtained. By adopting the preparation method, the preparation cost is low, the operation is simple, the preparation condition is mild, and the reaction period is also short.
Owner:SHANGHAI SHANSHAN TECH CO LTD +1

Preparation method capable of achieving large-scale preparation of Fe3O4@Aucore@shell structured nanorods with controllable size and dispersion

ActiveCN107552806AHigh graft densityOvercome the shortcomings of high matching requirementsMaterial nanotechnologyCelluloseChemical reaction
The invention discloses a preparation method capable of achieving large-scale preparation of super-paramagnetic Fe3O4@Au-core@shell structured nanorods with controllable size and dispersion, and belongs to the field of intersection of multiple subjects such as macromolecular living polymerization methods, functional polymer molecule design and inorganic crystal growth. The method comprises the following steps that (1), cellulose used for modifying hydroxide radical serves as a macromolecular initiator, and by means of a continuous polymerization ATRP technology and a linked chemical reaction,a series of brush-shaped triblock polymers cellulose-g-[P4VP-b-PAA-b-PS] and cellulose-g-[P4VP-b-PAA-b-PEG] are prepared separately, wherein the triblock polymers each comprise two template structureunits; (2), a solution-phase synthesis method serves as a basis, a certain quantity of the above-mentioned prepared brush-shaped triblock polymers serves as a monomolecular template, first section P4VP serves as a template phase, FeCl2.4H2O, FeCl3.6H2O and NH3.H2O serve as a precursor compound system, and then super-paramagnetic Fe3O4 nanorods are firstly prepared to serve as cores; and (3), similarly, a Fe3O4 nanorod system with the surface coated with a second template phase PAA serves as the monomolecular template, chloroauric acid serves as a precursor compound, tert-butylamine boron serves as a reducing agent, and then the gold nanorod shell structure is prepared.
Owner:郑州科斗科技有限公司

Preparation method of gold nanorods with large-scale preparation and controllable sizes and dispersibility

The invention discloses a preparation method of gold nanorods with large-scale preparation and controllable sizes and dispersibility, and belongs to the multidisciplinary field of polymeric activity polymerization methods, functional polymer molecular design, inorganic crystal growth, etc. The method comprises the steps: (1) taking ionic liquid AMIMCl as solvents, and anhydrous dimethylformamide and N-Methyl pyrrolidone (NMP) as diluents and acid absorbents separately, applying 2-bromoisobutyryl bromide to hydroxyls on a cellulose chain, and converting the hydroxyls into macroinitiators whichcan be used for atom transfer radical polymerization (ATRP); (2) preparing a series of brushy two-block polymers: cellulose-g-[PAA-b-PS] and cellulose-g-[PAA-b-PEG] with a continuous ATRP technology,a technology of combination of ATRP and Click Chemistry and other technologies by taking cellulose-Br as the macroinitiators; and (3) preparing the gold nanorods with oil dispersibility and water dispersibility based on a solution phase synthesis method by taking a certain amount of the brushy two-block polymers as monomolecular templates, chloroauric acid (HAuCl4.3H2O) as precursor compounds andtert-butylamine boron (TBAB) as reducing agents.
Owner:郑州科斗科技有限公司

Preparation method capable of preparing superparamagnetic Fe3O4 nanorod with controllable size and dispersity in large scale

ActiveCN107555485AHas the ability to coordinate and complexHigh graft densityMaterial nanotechnologyFerroso-ferric oxidesCelluloseDispersity
The invention discloses a preparation method capable of preparing a superparamagnetic Fe3O4 nanorod with controllable size and dispersity in a large scale, belonging to the multidisciplinary fields like polymer active polymerization process, functional polymer molecular design and inorganic crystal growth. The method comprises the following steps: (1) with an ionic liquid AMIMCl as a solvent and anhydrous dimethylformamide and N-methylpyrrolidone as a diluent and an acid absorbent, modifying hydroxyl on the chain of cellulose by using 2-bromoisobutyryl bromide so that a macromolecular initiator capable of being used for atom transfer radical polymerization is obtained; (2) by utilizing a continuous polymerization ATRP technology and a click chemistry reaction, respectively preparing a series of brush-shaped di-block polymers, i.e., cellulose-g-[PAA-b-PS] and cellulose-g-[PAA-b-PEG]; and (3) on the basis of a solution phase synthesis method, and with a certain amount of the above-mentioned prepared brush-shaped di-block polymers as a monomolecular template and FeCl2.4H2O, FeCl3.6H2O and NH3.H2O as a precursor compound system, preparing the superparamagnetic Fe3O4 nanorod with oil dispersity and water dispersity.
Owner:郑州科斗科技有限公司

A preparation method for large-scale preparation of gold nanorods with controllable size and dispersion

The invention discloses a preparation method of gold nanorods with large-scale preparation and controllable sizes and dispersibility, and belongs to the multidisciplinary field of polymeric activity polymerization methods, functional polymer molecular design, inorganic crystal growth, etc. The method comprises the steps: (1) taking ionic liquid AMIMCl as solvents, and anhydrous dimethylformamide and N-Methyl pyrrolidone (NMP) as diluents and acid absorbents separately, applying 2-bromoisobutyryl bromide to hydroxyls on a cellulose chain, and converting the hydroxyls into macroinitiators whichcan be used for atom transfer radical polymerization (ATRP); (2) preparing a series of brushy two-block polymers: cellulose-g-[PAA-b-PS] and cellulose-g-[PAA-b-PEG] with a continuous ATRP technology,a technology of combination of ATRP and Click Chemistry and other technologies by taking cellulose-Br as the macroinitiators; and (3) preparing the gold nanorods with oil dispersibility and water dispersibility based on a solution phase synthesis method by taking a certain amount of the brushy two-block polymers as monomolecular templates, chloroauric acid (HAuCl4.3H2O) as precursor compounds andtert-butylamine boron (TBAB) as reducing agents.
Owner:郑州科斗科技有限公司

A kind of metal oxide/nitrogen-doped carbon nanotube and its preparation method and application

The invention discloses a preparation method of a metallic oxide / N-doped carbon nano tube composite material. The preparation method comprises the following steps of: (1) ultrasonically dispersing an N-doped carbon nano tube in a mixed solution of water and alcohol to obtain a solution A; (2) under the condition of stirring, dripping a solution B into the solution A, and stirring to obtain a mixed solution, wherein the solution B is water and / or alcoholic solution containing metal ions; and (3) carrying out solid-liquid separation on the mixed solution, and washing, drying and roasting to obtain the metallic oxide / N-doped carbon nano tube composite material. The invention also provides the composite material obtained through the method and an application thereof. According to the preparation method disclosed by the invention, as a method of solution phase synthesis under the condition of room temperature is adopted, hydrothermal reaction and solvothermal reaction with high temperature and high pressure are avoided, and the composite material with tighter combination of the metallic oxnide and the / N-doped carbon nano tube can be obtained. By adopting the preparation method, the preparation cost is low, the operation is simple, the preparation condition is mild, and the reaction period is also short.
Owner:SHANGHAI SHANSHAN TECH CO LTD +1

Simple and convenient resorcinol formaldehyde resin hollow composite material and preparing method of derivative thereof

InactiveCN105061705ANo need to removeHas a cavity structureSolution phase synthesisIn situ polymerization
The invention discloses a simple and convenient resorcinol formaldehyde resin hollow composite material and a preparing method of derivative thereof. A surfactant modified hollow glass microspheres serves as a carrier, an in situ polymerization mode is used to enable the hollow glass microspheres to be coated by the resorcinol formaldehyde resin, the resorcinol formaldehyde resin hollow composite material is obtained and performs carbonizing treatment in the high temperature, and the resorcinol formaldehyde resin charring derivative is obtained. A mild solution phase synthesis method is utilized by the simple and convenient resorcinol formaldehyde resin hollow composite material, expensive reaction reagent does not need to be used, the carrier adopted is a high temperature-resistant material with a closed hollow structure, and the resorcinol formaldehyde resin hollow composite material can be obtained through one step without the removal of a template. The resorcinol formaldehyde resin hollow composite material has the characteristics of having a cavity structure and being low in density, good in dispersibility, simple in preparing method, low in weight and ablation resistance. The charring derivative with the cavity structure can be obtained through the carbonizing treatment and has the characteristics of being low in weight, easy to separate and ablation resistance.
Owner:HARBIN INST OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products