Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

98 results about "Charge-transfer complex" patented technology

A charge-transfer complex (CT complex) or electron-donor-acceptor complex is an association of two or more molecules, or of different parts of one large molecule, in which a fraction of electronic charge is transferred between the molecular entities. The resulting electrostatic attraction provides a stabilizing force for the molecular complex. The source molecule from which the charge is transferred is called the electron donor and the receiving species is called the electron acceptor.

Organic devices, organic electroluminescent devices, organic solar cells, organic FET structures and production method of organic devices

An organic device has a hole current-electron current conversion layer which comprises a laminate of an electron transportation section and a hole transportation section. The electron transportation section includes a charge transfer complex formed upon an oxidation-reduction reaction between a reduced low work function metal and an electron-accepting organic compound, the reduced metal being produced upon an in-situ thermal reduction reaction caused upon contact, through lamination or mixing by co-deposition, of an organic metal complex compound or an inorganic compound containing at least one metal ion selected from ions of low work function metals having a work function of not more than 4.0 eV, and a thermally reducible metal capable of reducing a metal ion contained in the organic metal complex compound or the inorganic compound in vacuum to the corresponding metal state, and the electron transportation section having the electron-accepting organic compound in the state of radical anions. The hole transportation section includes an organic compound having an ionization potential of less than 5.7 eV and an electron-donating property and an inorganic or organic substance capable of forming a charge transfer complex upon its oxidation-reduction reaction with the organic compound, the organic compound and the inorganic or organic substance being contacted through lamination or mixing, and the electron-donating organic compound is in the state of radical cations.
Owner:MITSUBISHI HEAVY IND LTD +1

Ink-jet printing ink compositions having magnetic properties and specific core/shell binder

Specific core-shell binders and magnetic additives for use in ink-jet printing ink compositions are provided. One class of specific core / shell binders has the general formula [AmBnC'p]x, where A and B are hydrophobic components in which A exhibits a glass transition temperature Tg between about -150° and +25° C. and B exhibits a glass transition temperature greater than 25° C., C' is a component that forms hydrophilic or water-soluble component in the polymer chain, and has an ionic or non-ionic structure, m<30 wt %, n>40 wt %, and p<30 wt %, with the total of m+n+p=100 wt %, and x=1 to 100,000. The molecular weight (weight average) of the polymer is between about 1,000 and 2,000,000. The polymers useful in the practice of the invention are prepared by emulsifying the monomers and then conducting a free-radical polymerization in water. The foregoing binder polymer is used in conjunction with magnetic additives comprising either (a) inorganic magnetic compound containing at least one of iron, cobalt, and nickel or (b) organic magnetic complexes containing at least one of iron, cobalt, and nickel or (c) organic charge transfer complexes that exhibit magnetic properties. The ratio of binder (I) to colorant (pigment) is greater that 1 to 10. The concentration of the magnetice additive is within the range of 1 to 30 wt %. The general ink formulation comprises: 5 to 50 wt % water-miscible solvent; 0.5 to 10 wt % colorant; 1 to 30 wt % magnetice additive; and water.
Owner:HEWLETT PACKARD DEV CO LP

Colorless and transparent polyimide resin material and preparation method thereof

The invention discloses a colorless and transparent polyimide resin material. 1,2,3,4-cyclohexanetetracarboxylic dianhydride is chosen as dianhydride monomer or comonomer to carry out polycondensation reaction with primary diamine, so that the polyimide resin material is prepared. Because the 1,2,3,4-cyclohexanetetracarboxylic dianhydride comonomer has a distorted molecular structure, a large free volume exists between polymer molecular chains, and thereby the formation of charge transfer complex (CTC) in and between polyimide molecules is inhibited; and meanwhile, because of the introductionof a lipid structure, the electron-stimulated transition mode in the polyimide molecular chains is changed, the absorption of the aromatic polyimide in the visible light region is remarkably weakened, and thereby the transparency of the polymer is greatly increased. The ultraviolet light transmission cutoff wavelength of a produced polyimide film is 280nm to 380nm, the light transmissivity at 450nm is 86 to 94 percent, moreover, the glass-transition temperature is 250 DEG C to 400 DEG C, and the polyimide resin material has a good application prospect in the fields of flexible substrate materials for solar cells, flexible transparent conducting film substrate materials, liquid crystal display materials and the like.
Owner:WUHAN YIMAIDE NEW MATERIALS TECH CO LTD

High-transparent low-expansion polyimide film for flexible display and preparation method of high-transparent low-expansion polyimide film

The invention belongs to the technical field of functional polymer materials, and particularly relates to a high-transparent low-expansion polyimide film for flexible display and a preparation methodof the high-transparent low-expansion polyimide film. The high-transparent low-expansion polyimide film for flexible display is prepared from a beta-lithium nepheline inorganic nanometer filler with anegative expansion coefficient adding into a polyimide matrix through an in-situ polymerization method, addition of the beta-lithium nepheline inorganic nanometer filler increases the glass-transition temperature, and meanwhile, can reduce a thermal expansion coefficient; the polyimide matrix is obtained by a polycondensation reaction of 1,4-bis(3,4-dicarboxylic acid-5-trifluoromethyl acylamino benzene)cyclohexane dianhydride and aromatic diamine monomers, since dianhydride monomers simultaneously have fluorine-contained groups and alicyclic structures, formation of intermolecular and intramolecular charge transfer complexes can be effectively inhibited, the transparency of polymers is greatly improved, and meanwhile, contained acylamino can also lower a thermal expansion coefficient of polyimide; and according to the preparation method of the high-transparent low-expansion polyimide film, the production cost is low, and film forming performance is good.
Owner:SHANDONG HUAXIA SHENZHOU NEW MATERIAL

Method for preparing polyimide polymer with azo-pyrimidine structure unit

The invention relates to a method for preparing a diamine monomer with an azo-pyrimidine structure and a method for preparing a polyimide polymer by adopting the diamine monomer with the azo-pyrimidine structure. The preparation method comprises the following steps: carrying out a coupling reaction on 4-substituted aniline and sodium phenate to obtain 4-hydroxy-4'-substituted azobenzene; and carrying out nucleophilic substitution on the 4-hydroxy-4'-substituted azobenzene and dibromoalkane to generate bromo-azobenzene, and reacting the bromo-azobenzene with 4,6-diamido-2-mercaptopyrimidine to obtain the diamine monomer; and carrying out condensation polymerization on the diamine monomer with dianhydride to obtain polyimide. The pyrimidine structure is introduced into the diamine monomer, so that the charge transfer complex effect of aromatic rings of polyimide is reduced, and the glass transition temperature of the polyimide is reduced; and the azo group has photo-induced anisotropy, and an azo unit is introduced into the polyimide by alkyl chains having different lengths, so that the heterogeneous degree of the azo group can be effectively regulated, and the application of the polyimide in alignment films and other optical fields can be improved to a great extent.
Owner:南通晶爱微电子科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products