Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

251 results about "Visual Feedbacks" patented technology

Method and system for high-speed, 3D imaging of optically-invisible radiation and detector and array of such detectors for use therein

A high-speed, three-dimensional, gamma-ray imaging method and system as well as a detector and array of such detectors for use therein are provided which characterize radioactivity distributions in nuclear and radioactive waste and materials facilities by superimposing radiation images on a view of the environment using see-through display screens or shields to provide a stereoscopic view of the radiation. The method and system provide real-time visual feedback about the locations and relative strengths of radioactive sources. The method and system dynamically provide continuous updates to the displayed image illustrating changes, such as source movement. A pair of spaced gamma-ray cameras of a detector subsystem function like “gamma eyes”. A pair of CCD cameras may be coupled to the detector subsystem to obtain information about the physical architecture of the environment. A motion tracking subsystem is used to generate information on the user's position and head orientation to determine what a user “sees”. The invention exploits the human brain's ability to naturally reconstruct a 3D, stereoscopic image from 2D images generated by two “imagers” separated by a known angle(s) without the need for 3D mathematical image reconstruction. The method and system are not only tools for minimizing human exposure to radiation thus assisting in ALARA (As Low As Reasonably Achievable) planning, but also are helpful for identifying contamination in, for example, laboratory or industrial settings. Other optically-invisible radiation such as infrared radiation caused by smoldering fires may also be imaged. Detectors are manufactured or configured in curvilinear geometries (such as hemispheres, spheres, circles, arcs, or other arrangements) to enable sampling of the ionizing radiation field for determination of positional activity (absolute or relative amounts of ionizing radiation) or spectroscopy (energy distributions of photons). More than one detector system may be used to obtain three-dimensional information. The detector systems are specifically suitable for direct visualization of radiation fields.
Owner:RGT UNIV OF MICHIGAN

Zero-front-footprint compact input system

An input system for compact devices such as cell phones and watches which includes alphanumeric and pointer capability, provides input rates similar to those of optimized-stylus-keyboard and thumboard systems, and is one-hand operable and compatible with full-face displays. Input is by means of an “eyes-free” pointing device (which may be a touchpad with tactile markings, an isometric sensor or an array of discrete keys) which may be mounted on the back of the unit. An optionally-displayed menu of input options embodies a gestural code: the action needed to select a symbol on the menu is the required gesture—even when the menu is not shown. Cursor control is through an absolute positional function; this permits experienced users to type by touch, relying on kinesthetic cues. The user may maintain contact with the sensor during transits between selections, in which case visual feedback (in the form of a cursor, highlighting of indicated menu features, and/or a stroke trace) is provided—which enables pre-emptive correction of errors, and quick learning. The user indicates selection with a modulation of contact pressure. Two gestural lexicons are described. One uses pointing gestures and a flat menu, and is simpler; the other uses stroke gestures and a cellular menu, and is more space-efficient.
Owner:MIDDLETON BRUCE PETER

Cruising robot pan-tilt adjustment method based on visual feedback

The invention discloses a cruising robot pan-tilt adjustment method based on visual feedback. The method comprises the steps that a cruising robot conducts cruising and transmits a real-time shot and collected equipment image to a server in the cruising process; the server matches the real-time collected equipment image with matching templates stored in a database; the position offset relation between the real-time collected equipment image and a template image and the matching value of the two images are computed; the completeness of the collected equipment image is judged according to the computed matching value; when it is judged that the collected equipment image is incomplete, pan-tilt posture data and camera working parameters of the cruising robot are adjusted, and the cruising robot is controlled to conduct cruising on a next preset point when it is judged that the collected equipment image is complete or the number of adjustment times reaches a preset time number threshold value. By means of the method, automatic pan-tilt adjustment of the cruising robot can be realized, the control precision and intelligent degree are high, operation is convenient and fast, and the method can be widely applied to the industry of cruising robots.
Owner:国机智能科技有限公司 +1

Hybrid brain-computer interface method based on steady state motion visual evoked potential and default stimulation response

The invention discloses a hybrid brain-computer interface method based on steady state motion visual evoked potential and default stimulation response. The method includes the steps that 1, a testee wears an electrode cap, a reference electrode, a ground electrode and a testing electrode on the electrode cap make contact with the head of the testee, and the vision and the computer screen are in the eye level through visual inspection; 2, a steady state motion visual evoked potential and default stimulation response mixed normal form program is compiled through MATLAB in advance, the testee selects a stimulation target to stare according to a target prompt, and electroencephalogram signals acquired by the electrode cap are stored in a computer; 3, steady state motion visual evoked potential features and default stimulation response features are subjected to feature extraction respectively, and then the stimulation target is subjected to classified recognition; 4, the computer screen displays the stimulation target recognition result, and visual feedback is conducted on the testee; 5, the steps are repeated, and the next round is conducted till the program is ended. According to the hybrid brain-computer interface method, two types of feature recognition information is adopted, and the method has the advantages that operation is simple, less training time is needed, and less electrodes are needed.
Owner:XI AN JIAOTONG UNIV

Feedback system based on motor imagery brain-computer interface

The invention discloses a feedback system based on a motor imagery brain-computer interface. The feedback system comprises a feedback module, an electroencephalogram collector, a wireless transmission module and a terminal device; the feedback module is used for compiling a feedback interface; the electroencephalogram collector is used for collecting an electroencephalogram signal associated with motion; the electroencephalogram signal is amplified and filtered by the electroencephalogram collector after scalp electrode detection and is transmitted to the terminal device by the wireless transmission module; and the terminal device is used for carrying out data processing on the electroencephalogram signal to extract a motor imagery characteristic signal, and the motor imagery characteristic signal is used for forming visual feedback after mode identification and controlling the feedback interface to form a closed loop control system. Compared with the traditional MI-BCI system, the feedback system disclosed by the invention better conforms to a normal thinking action control process and approaches to actual interactive application, thereby being expected to provide critical technological guarantee for novel MI-BCI. The feedback system disclosed by the invention can be applied to the fields of disabled rehabilitation, electronic entertainment, industrial control, aerospace engineering, etc.
Owner:TIANJIN UNIV

Three-stage brain-controlled upper limb rehabilitation method combining steady-state visual evoked potential and mental imagery

The invention relates to a three-stage brain-controlled upper limb rehabilitation method combining steady-state visual evoked potential and mental imagery (MI). The method comprises the following steps: (1) the first stage of VR video guidance training: a patient is made to be familiar with upper limb rehabilitation movements through VR video guidance; (2) the second stage of VR-SSVEP training: the patient needs to concentrate to observe pictures that represent different upper limb movements and flicker with a specific frequency, EEG signals of the patient are collected in real-time to analyzeintentions of the patient, and visual feedback is provided to the patient through VR animation to make the patient learn to concentrate; and (3) the third stage of VR-MI training: EEG signals of theleft and right upper limbs of the patient during MI are collected during off-line training, and a mental imagery intention recognition model is established. The EEG signals of mental imagery of the patient are analyzed according to the model during online training, movement intentions of the patient are recognized, and movements of a 3D character in an interface are controlled in real time, so that brain central nerve remodeling is facilitated through MI. The method exhibits a good immersion property, enables active rehabilitation to be realized, enables rehabilitation to proceed step by step,and is a new method for upper limb rehabilitation of a cerebral stoke patient.
Owner:SHANGHAI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products