Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

511results about "By membranes" patented technology

Apparatus for concentrating and diluting specific gas and method for concentrating and diluting specific gas

One ozone concentrating chamber is provided therein with a part of a cooling temperature range where ozone can be selectively condensed or an oxygen gas can be selectively removed by transmission from an ozonized oxygen gas, and a part of a temperature range where condensed ozone can be vaporized, and condensed ozone is vaporized by moving condensed ozone with flow of a fluid or by gravitation to the part where condensed ozone can be vaporized, whereby the ozonized oxygen gas can be increased in concentration. Such a constitution is provided that a particle material 13 for condensation and vaporization filled in the ozone concentrating chambers 11 and 12 has a spherical shape of a special shape with multifaceted planes on side surfaces, or an oxygen transmission membrane 130 capable of selectively transmitting an oxygen gas in an ozone gas is provided.
Owner:TOSHIBA MITSUBISHI-ELECTRIC IND SYST CORP

Sequestration of carbon dioxide

A process for selectively removing carbon dioxide from a gaseous stream by converting the carbon dioxide to a solid, stable form is provided. In a sequestration process, carbon dioxide enriched air is passed through a gas diffusion membrane to transfer the carbon dioxide to a fluid medium. The carbon dioxide rich fluid is then passed through a matrix containing a catalyst specific for carbon dioxide, which accelerates the conversion of the carbon dioxide to carbonic acid. In the final step, a mineral ion is added to the reaction so that a precipitate of carbonate salt is formed. This solid mineral precipitate can be safely stored for extended periods of time, such as by burying the precipitate in the ground or depositing the precipitate into storage sites either on land or into a body of water. An apparatus for removing carbon dioxide from a gaseous stream is also provided.
Owner:GM GLOBAL TECH OPERATIONS LLC

Carbon dioxide capture systems and methods

A carbon dioxide separation system includes a compressor for receiving an exhaust gas comprising CO2 and generate a compressed exhaust gas and a separator configured to receive the compressed exhaust gas and generate a CO2 lean stream. The separator includes a first flow path for receiving the compressed exhaust gas, a second flow path for directing a sweep fluid therethrough, and a material with selective permeability of carbon dioxide for separating the first and the second flow paths and for promoting carbon dioxide transport therebetween. The system further includes an expander coupled to the compressor for receiving and expanding the CO2 lean stream to generate power and an expanded CO2 lean stream.
Owner:GENERAL ELECTRIC CO

Carbon Dioxide Recovery

Disclosed herein is a method and system for separating carbon dioxide (CO2) from a CO2 containing gas stream containing water vapor and additional impurities, for example, nitrogen, oxygen, sulfur oxides, nitrogen oxides, and mercury. The CO2 is captured by subjecting the CO2 gas feed stream to a temperature swing adsorption step. The temperature swing adsorption step comprises an adsorption step for producing a substantially dry carbon dioxide-depleted stream, and an adsorbent regeneration step comprising heating the adsorbent bed to produce a substantially water vapor-free carbon dioxide stream. Moisture from the gas stream containing CO2 is optionally removed by pressure swing adsorption, temperature swing adsorption, membrane separation, or absorption prior to CO2 capture.
Owner:INNOSEPRA LLC

Extraction and sequestration of carbon dioxide

The present disclosure provides a method and apparatus for extracting carbon dioxide (CO2) from a fluid stream and for delivering that extracted CO2 to controlled environments for utilization by a secondary process. Various extraction and delivery methods are disclosed specific to certain secondary uses, included the attraction of CO2-sensitive insects, the ripening and preservation of produce, and the neutralization of brine.
Owner:KILIMANJARO ENERGY

Ordered mesopore silica mixed matrix membranes, and production methods for making ordered mesopore silica mixed matric membranes

Mixed matrix membranes are prepared from mesoporous silica (and certain other silica) and membrane-forming polymers (such as polysulfone), in a void free fashion where either no voids or voids of less than 100 angstroms are present at the interface of the membrane-forming polymer and the silica. Such silica-containing mixed matrix membranes are particularly useful for their selectivity (such as carbon dioxide selectivity) and permeability. Methods for separating carbon dioxide are provided.
Owner:VIRGINIA TECH INTPROP INC

Purification of carbon dioxide

ActiveUS20080176174A1SolidificationLiquefactionFlue gasOxy-fuel combustion process
Carbon dioxide is separated from a feed gas, preferably derived from flue gas from an oxyfuel combustion process, in a membrane separation system to produce separated carbon dioxide gas which is fed to the oxyfuel combustion process to improve the performance of the process.
Owner:AIR PROD & CHEM INC

Power generation process with partial recycle of carbon dioxide

Disclosed herein is a power generation process in which a portion of the carbon dioxide generated by gaseous fuel combustion is recycled back to the power generation process, either pre-combustion, post-combustion, or both. The power generation process of the invention may be a combined cycle process or a traditional power generation process. The process utilizes sweep-based membrane separation.
Owner:MEMBRANE TECH & RES

High carbon content filamentary membrane and method of making the same

A high carbon content membrane and method for making the same are disclosed. The carbon membrane includes an asymmetric hollow filamentary carbon membrane, including a partial carbonization product of an asymmetric hollow filament including an aromatic imide polymer material. The carbon membrane is at least 95 weight percent carbon, and has a dense layer located in the outside surface portion of the hollow filamentary membrane and a porous base layer continued from the dense layer and located in the inside portion of the hollow filamentary membrane. A process for separating CO2 from natural gas is described including: contacting a mixture of CO2 and natural gas with a first side of a carbon membrane in a manner to cause a portion of the mixture to pass through the carbon membrane to a permeate side. The resulting mixture on the permeate side becomes enriched in CO2 over that of the mixture on the first side. The contacting step occurs at a pressure of at least about 200 psia.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

Methods and apparatus for hydrogen gas production

An apparatus for producing hydrogen gas, wherein the apparatus includes a reactor. The reactor includes a catalyst, a membrane in flow communication with the catalyst, and a heat exchanger integrated with the reactor.
Owner:GENERAL ELECTRIC CO

Power generation process with partial recycle of carbon dioxide

Disclosed herein is a power generation process in which a portion of the carbon dioxide generated by gaseous fuel combustion is recycled back to the power generation process, either pre-combustion, post-combustion, or both. The power generation process of the invention may be a combined cycle process or a traditional power generation process. The process utilizes sweep-based membrane separation.
Owner:MEMBRANE TECH & RES

Separation of carbon dioxide from methane utilizing zeolitic imidazolate framework materials

The present invention relates to the selective separation of carbon dioxide (“CO2”) from methane (“CH4”) in streams containing both carbon dioxide and methane utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate carbon dioxide from natural gas streams preferably for sequestration of at least a portion of the carbon dioxide present in the natural gas.
Owner:EXXON RES & ENG CO

Membranes With Functionalized Carbon Nanotube Pores For Selective Transport

Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.
Owner:LAWRENCE LIVERMORE NAT SECURITY LLC

Ionic liquid-solid-polymer mixed matrix membranes for gas separations

New ionic liquid-solid-polymer mixed matrix membranes were proposed for gas separations such as CO2 removal from natural gas or N2. For the new mixed matrix membranes, the solids such as carbon molecular sieves, microporous molecular sieves, MCM-41 type of mesoporous molecular sieves, or polymer of intrinsic microporosity (PIM) are coated (or impregnated) with ionic liquids such as 1-butyl-3-methyl imidazolium bis[trifluoromethylsulfonyl]amide. The ionic liquids coated or impregnated solids are then dispersed in the continuous polymer matrix to form mixed matrix membranes. These hybrid mixed matrix membranes will combine the properties of the continuous polymer phase, the ionic liquids, and the dispersed ionic liquids coated or impregnated solids phase, which will possibly open up new opportunities for gas separation processes such as CO2 separation from natural gas or flue gas.
Owner:UOP LLC

Carbon dioxide capture systems and methods

InactiveUS20080011161A1Gas treatmentCarbon compoundsCarbon dioxide transportSeparation system
A carbon dioxide separation system comprises a first flow path for directing a fluid comprising carbon dioxide therethrough, a second flow path for directing a sweep fluid therethrough, and a separator comprising a material with selective permeability of carbon dioxide for separating the first and the second flow paths and for promoting carbon dioxide transport therebetween. A carbon dioxide separation unit is in fluid communication with the second flow path for separating the transported carbon dioxide from the sweep fluid.
Owner:GENERAL ELECTRIC CO

High performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes

In the present invention high performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes and methods for making and using these membranes have been developed. The cross-linked polybenzoxazole and polybenzothiazole polymer membranes are prepared by: 1) first synthesizing polyimide polymers comprising pendent functional groups (e.g., —OH or —SH) ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone; 2) fabricating polyimide membranes from these polymers; 3) converting the polyimide membranes to polybenzoxazole or polybenzothiazole membranes by heating under inert atmosphere such as nitrogen or vacuum; and 4) finally converting the membranes to high performance cross-linked polybenzoxazole or polybenzothiazole membranes by a crosslinking treatment, preferably UV radiation. The membranes can be fabricated into any convenient geometry. The high performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes of the present invention are suitable for a variety of liquid, gas, and vapor separations.
Owner:UOP LLC

Process for production of elemental iron

A process to prepare elemental iron by contacting an iron ore feed with a reducing gas at a pressure of between 1 and 10 bar to obtain iron and an off-gas includes preparing the reducing gas by performing the following steps: (a) partially oxidizing a mixture comprising a solid or liquid carbonaceous fuel and oxygen at a pressure of between 10 and 80 bar, thereby obtaining a gas comprising H2 and CO; (b) removing CO2 and H2S from the gas obtained in step (a) to obtain an intermediate gas comprising H2 and CO; (c) supplying the intermediate gas obtained in step (b) to a H2-selective membrane to obtain a H2-rich permeate gas and a CO-rich retentate; and (d) heating H2-rich permeate to obtain a heated H2-rich permeate as the reducing gas.
Owner:SHELL OIL CO

Cross-linkable and cross-linked mixed matrix membranes and methods of making the same

The present invention is for novel high performance cross-linkable and cross-linked mixed matrix membranes and the use of such membranes for separations such as for CO2 / CH4, H2 / CH4 and propylene / propane separations. More specifically, the invention involves the preparation of cross-linkable and cross-linked mixed matrix membranes (MMMs). The cross-linkable MMMs were prepared by incorporating microporous molecular sieves or soluble high surface area microporous polymers (PIMs) as dispersed microporous fillers into a continuous cross-linkable polymer matrix. The cross-linked MMMs were prepared by UV-cross-linking the cross-linkable MMMs containing cross-linkable polymer matrix such as BP-55 polyimide. Pure gas permeation test results demonstrated that both types of MMMs exhibited higher performance for CO2 / CH4 and H2 / CH4 separations than those of the corresponding cross-linkable and cross-linked pure polymer matrices.
Owner:UOP LLC

Natural gas treatment process for stimulated well

A process and equipment for treating natural gas produced by a well that has recently been stimulated, and that contains an undesirably high concentration of the fracturing gas used to stimulate the well. The process involves treating the gas by membrane separation, and provides for control of treatment parameters to compensate for the changing concentration of fracturing gas in the produced gas, as well as changes in gas flow rate.
Owner:MEMBRANE TECH & RES

Carbon Dioxide Removal Process

A process for efficiently removing carbon dioxide from a hydrocarbon containing feed stream utilizing a membrane separation unit in conjunction with a heat exchanger and a carbon dioxide separation unit wherein the streams obtained in the carbon dioxide separation unit are utilized to provide the cooling effect in the heat exchanger.
Owner:LAIR LIQUIDE SA POUR LETUDE & LEXPLOITATION DES PROCEDES GEORGES CLAUDE

Methods and systems for reducing carbon dioxide in combustion flue gases

A method for processing flue-gas, in an exemplary embodiment, includes providing an absorber unit having a membrane contactor, channeling a combustion flue gas along a first surface of the membrane contactor, and channeling an ammonia-based liquid reagent along a second opposing surface of the membrane contactor. The method also includes partially separating the ammonia-based liquid from the flue gas such that the ammonia-based liquid and the flue gas contact at gas-liquid interface areas, defined by a plurality of pores of the membrane contactor, to separate CO2 from the flue gas by a chemical absorption of CO2 within the ammonia-based liquid to produce a CO2-rich ammonia-based liquid.
Owner:BHA ALTAIR

Carbon dioxide recovery

Disclosed herein is a method and system for separating carbon dioxide (CO2) from a CO2 containing gas stream containing water vapor and additional impurities, for example, nitrogen, oxygen, sulfur oxides, nitrogen oxides, and mercury. The CO2 is captured by subjecting the CO2 gas feed stream to a temperature swing adsorption step. The temperature swing adsorption step comprises an adsorption step for producing a substantially dry carbon dioxide-depleted stream, and an adsorbent regeneration step comprising heating the adsorbent bed to produce a substantially water vapor-free carbon dioxide stream. Moisture from the gas stream containing CO2 is optionally removed by pressure swing adsorption, temperature swing adsorption, membrane separation, or absorption prior to CO2 capture.
Owner:INNOSEPRA LLC

Imidazolium-based room-temperature ionic liquids, polymers, monomers, and membranes incorporating same

The present invention provides gels, solutions, films, membranes, compositions, and other materials containing polymerized and / or non-polymerized room-temperature ionic liquids (RTILs). These materials are useful in catalysis, gas separation and as antistatic agents. The RTILs are preferably imidazolium-based RTILs which are optionally substituted, such as with one or more hydroxyl groups. Optionally, the materials of the present invention are composite materials comprising both polymerized and non-polymerized RTILs. The RTIL polymer is formed from polymerized RTIL cations typically synthesized as monomers and polymerized in the presence of the non-polymerized RTIL cations to provide a solid composite material. The non-polymerized RTIL cations are not covalently bound to the cationic polymer but remain as free cations within the composite material able to associate with charged subunits of the polymer. These composite materials are useful in catalysis, gas separation, and antistatic applications.
Owner:UNIV OF COLORADO THE REGENTS OF

Gas purification processes

A method for removing contaminants from a natural gas stream such as a biogas / landfill gas stream. The natural gas stream is fed to a first adsorption unit for removal of certain contaminants and then to a second adsorption unit for the removal of additional contaminants. Alternatively, a membrane stage may be employed between the adsorption units. The method utilizes the external purge to enhance pressure swing adsorption working capacity so that the vacuum level required for regeneration is not as high.
Owner:LINDE AG

Devices, systems and methods for reducing the concentration of a chemical entity in fluids

A device for removal of at least a portion of carbon dioxide from an aqueous fluid includes at least one membrane through which carbon dioxide can pass to be removed from the fluid and immobilized carbonic anhydrase on or in the vicinity of a first surface of the membrane to be contacted with the fluid such that the immobilized carbonic anhydrase comes into contact with the fluid. The first surface exhibits carbonic anhydrase activity of at least 20% of maximum theoretical activity of the first surface of the membrane based on monolayer surface coverage of carbonic anhydrase in the case that the carbonic anhydrase is immobilize on the first surface.
Owner:UNIVERSITY OF PITTSBURGH

Cross-linked polybenzimidazole membrane for gas separation

A cross-linked, supported polybenzimidazole membrane for gas separation is prepared by layering a solution of polybenzimidazole (PBI) and α,α′dibromo-p-xylene onto a porous support and evaporating solvent. A supported membrane of cross-linked poly-2,2′-(m-phenylene)-5,5′-bibenzimidazole unexpectedly exhibits an enhanced gas permeability compared to the non-cross linked analog at temperatures over 265° C.
Owner:LOS ALAMOS NATIONAL SECURITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products