Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

746results about "Neutron radiation measurement" patented technology

Boron coated straw neutron detector

ActiveUS7002159B2Sensitive to radiationImpression capsElectric discharge tubesElectronCharge division
A neutron detector technology based on 10B thin film conversion of neutrons and detection of neutron capture reaction products in a counter gas within a thin straw tube detector body is described. This neutron detector is based on gas-filled thin wall straw tubes, modified for the conversion of neutrons in a very thin coating, or layer, of 10B, applied for example as a sputter-coated film of 10B4C, that lines the interior, or inside of the straw tube surface; and the subsequent detection of the neutron reaction products in the counter gas. One embodiment of this invention employs a closely-packed array of 10B4C-lined straw tubes employing a very thin and therefore high efficiency 10B4C layer, hence removing the barrier to efficient neutron capture reaction product escape while still providing for efficient neutron capture by providing a plurality of very thin 10B converters, each individual converter element providing efficient reaction product escape. Using such densely packed straw tube detectors of small diameter, a reasonable stack depth allows a high neutron detection efficiency to be achieved on the 1–10Å wavelength range of thermal neutrons. The position of each interacting neutron can be accurately obtained with for example, resistive charge division readout combined with straw decoding electronics to determine the identity of the struck straw.
Owner:PROPORTIONAL TECH

Method for detecting an explosive in an object under investigation

A method for detecting an explosive in an object under investigation involves the initial X-ray irradiation of the object under investigation, e.g. a piece of luggage or mailing, and forming its X-ray images; using the X-ray images to detect areas with a high density of organic materials and identifying articles therein; determining the location, dimensions and supposed mass of an unidentified article; determining and forming a directional pattern of the neutron radiator corresponding to the dimensions of the unidentified article. The method further includes subsequent thermal neutron irradiation of the area with the unidentified article; recording gamma-ray quanta having the energy of 10.8 MeV and cascade gamma-ray quanta with energies of 5.534 and 5.266 MeV by at least two gamma-ray detectors; counting of simultaneously recorded pairs of cascade gamma-ray quanta; determination of the overall gamma-ray intensity, taking into account weight factors in readings of the detectors; determination of the threshold value for the overall gamma-ray intensity basing on the supposed mass of explosive being detected; and making a decision in the event the threshold value of overall gamma-ray intensity is exceeded. When checking small-size objects, the neutron irradiation step is preceded by replacing the ambient air by a gaseous medium not containing nitrogen.
Owner:SCI & TECHN CENT RATEC

Smart wearable mine detector

To improve the problems of conventional mine detectors, the purpose of the present invention is to provide a smart wearable mine detector comprising a human body antenna unit 100, a main microprocessor unit 200, a smart eyeglasses unit 300, a body-mounted LCD monitor unit 400, a wireless data transmission and reception unit 500, a belt-type power supply unit 600, a black box-type camera unit 700, and a security communication headset 800, the smart wearable mine detector: can be detachably worn on the head, torso, arm, waist, leg and the like of a body while a combat uniform is worn, thereby having excellent compatibility with conventional combat uniforms; enables a human body antenna unit which is detachably attached to a body and detects a mine through a super high-frequency RF beam and a neutron technique to be applied so as to detect the mine by identifying metals, nonmetals, and initial explosives of the mine; enables mines buried on the ground and under the ground to be detected in all directions (360°), and a distance, location, form, and materials of the mines to be exhibited on smart eyeglasses and a body-mounted LCD monitor unit in real time as 2D or 3D images such that a combatant can engage in battle avoiding mines, thereby improving combat efficiency by 90% when compared to existing combat efficiency; enables a battle to be carried out for three to seven days through a twin self-power supply system of a portable battery and a belt-type power supply unit even without need for charging power; and enables combat situations in a remote place to be monitored, in real time, in a remote combat command server, and allows each combatant to share combat information one to one such that it is possible to construct a smart combat command system capable of remotely commanding real combat situations as if one was on site of the battle.
Owner:FOUND FOR RES & BUSINESS SEOUL NAT UNIV OF SCI & TECH

Radiographic equipment

The invention concerns radiographic equipment. The equipment includes a source of substantially mono-energetic fast neutrons produced via the deuterium-tritium or deuterium-deuterium fusion reactions, comprising a sealed-tube or similar generator for producing the neutrons. The equipment further includes a source of X-rays or gamma-rays of sufficient energy to substantially penetrate an object to be imaged and a collimating block surrounding the neutron and gamma-ray sources, apart from the provision of one or more slots emitting substantially fan-shaped radiation beams. Further included is a detector array comprising a multiplicity of individual scintillator pixels to receive radiation energy from the sources and convert the received energy into light pulses, the detector array aligned with the fan-shaped beams emitted from the source collimator and collimated to substantially prevent radiation other than that directly transmitted from the sources reaching the array. Conversion means are included for converting the light pulses produced in the scintillators into electrical signals. Conveying means are included for conveying an object between the sources and the detector array. Computing means are included for determining from the electrical signals the attenuation of the neutrons and the X-ray or gamma-ray beams and to generate output representing the mass distribution and composition of the object interposed between the source and detector array. The equipment further includes a display means for displaying images based on the mass distribution and the composition of the object being scanned.
Owner:COMMONWEALTH SCI & IND RES ORG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products