Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

102results about How to "Strengthen the mechanical connection" patented technology

Tissue lockable connecting structures

Percutaneous skin access devices include a plurality of locked connecting units mounted to the exterior surface of an implantable medical object which, in position, is configured to penetrate the skin of a subject. The locked connecting units may be mounted directly onto the desired surface of the exterior of the device or may be held on a substrate sheet, which is mounted to the exterior surface of the device. In position, the locked connecting units engage with soft tissue which can include the skin to form a bio-junction layer which includes mechanical and bio-sealing connection between the device body and the soft tissue. The configuration at the bio-junction layer secures the medical object in location in the subject even for long-term indwelling applications in a manner, which inhibits soft tissue infection.
The locked connecting units may be rigid or semi-rigid for longer-term indwelling applications, and semi-rigid and/or resilient for shorter term indwelling applications. The locked connecting units may take on the form of rings, hooks, or loops having aperture or gap width/length sizes of from about 0.2–4 mm. The rings, loops, or hooks may connect with any soft tissue including skin as well subcutaneous tissue. The rings, hooks, or loops may be released from the skin/tissue without requiring surgical cutting procedures.
The locked connecting units may be configured as a semi-rigid mesh collar arranged about the primary body providing access to the subject such that it resides in the subject and engages with the skin (epidermal/dermal layer). The mesh collar can be described as a particular type of ring or loop structure as the mesh defines the gap provided in individual loop configurations. The mesh collar may be used alone, or in combination with the loops, rings, or hooks. A skin stop collar having increased rigidity may be disposed under the mesh collar.
Owner:EAST CAROLINA UNIVERISTY

Carbon nano tube enhanced tin-copper-nickel alloy cathode and preparation method thereof

InactiveCN103022418AHigh charge-discharge specific capacityStrong cycle performanceCell electrodesCopper nickel alloyCopper foil
The invention discloses a carbon nano tube enhanced tin-copper-nickel alloy cathode used for a lithium ion battery, and a preparation method of the cathode. According to the invention, the electroplating method is adopted to composite carbon nano tubes into an electrode, and chemical nickel plating processing to the carbon nano tubes is performed before electroplating; and furthermore, a Cu-(CNTs-Ni) connection layer is added between active material and a current collector, thereby improving the circulation property of the alloy cathode greatly. According to the invention, copper foil is used as a current collector (electroplating substrate) to composite and electroplate a Cu-(CNTs-Ni) composite coating and a Sn-(CNTs-Ni) composite coating in sequence, and finally the carbon nano tube enhanced tin-copper-nickel alloy cathode is obtained by heat treating. The lithium ion battery tin-copper-nickel alloy cathode prepared by adopting the method has a specific discharge capacity of 500-700 mAh/g for the first time, and the specific capacity is only decayed by 4-6 percent after 200 times of circulation. According to the invention, the process is simple, the performance of the prepared alloy cathode is good, and the alloy cathode is suitable for performing large-scale industrialized production.
Owner:XIANGTAN UNIV

Mechanically and electrically connecting member

Disclosed herein is a member for mechanically and electrically connecting two or more objects, including an insulation body having a plurality of coupling holes for coupling the objects formed therein, a plate-shaped conductive strip mounted at the rear surface of the insulation body in the diagonal direction of the insulation body while the conductive strip is isolated from the front surface of the insulation body, the conductive strip having connection holes formed at opposite ends thereof such that the connection holes communicate with the insulation body, and a connecting bar constructed such that the connecting bar can be inserted into the corresponding connection hole of the conductive strip while the strip is connected to the objects. The connecting member accomplishes excellent mechanical connection and stable electrical connection of objects, easy assembly and disassembly, and low possibility of short circuits. Furthermore, the objects can be connected with each other in a compact structure, and therefore, the connecting member according to the present invention can be preferably used to connect battery modules constituting a medium- or large-sized battery system, especially, for electric vehicles or hybrid electric vehicles.
Owner:LG ENERGY SOLUTION LTD

Mechanically and electrically connecting member

Disclosed herein is a member for mechanically and electrically connecting two or more objects, including an insulation body having a plurality of coupling holes for coupling the objects formed therein, a plate-shaped conductive strip mounted at the rear surface of the insulation body in the diagonal direction of the insulation body while the conductive strip is isolated from the front surface of the insulation body, the conductive strip having connection holes formed at opposite ends thereof such that the connection holes communicate with the insulation body, and a connecting bar constructed such that the connecting bar can be inserted into the corresponding connection hole of the conductive strip while the strip is connected to the objects. The connecting member accomplishes excellent mechanical connection and stable electrical connection of objects, easy assembly and disassembly, and low possibility of short circuits. Furthermore, the objects can be connected with each other in a compact structure, and therefore, the connecting member according to the present invention can be preferably used to connect battery modules constituting a medium- or large-sized battery system, especially, for electric vehicles or hybrid electric vehicles.
Owner:LG ENERGY SOLUTION LTD

Semiconductor device and manufacturing method thereof

The invention discloses a semiconductor device and a manufacturing method thereof. A first bonding layer and a second bonding layer of the semiconductor device are in contact with each other to provide bonding between a first wafer and a second wafer. The contact surface of the first bonding layer and the second bonding layer is a bonding surface. A first conductive channel and a second conductivechannel are connected to each other to provide an electrical connection between the first wafer and the second wafer. The first wafer further comprises a first pseudo channel penetrating through thefirst bonding layer, and the second wafer further comprises a second pseudo channel penetrating through the second bonding layer, wherein the first pseudo channel and the second pseudo channel are incontact with each other to improve the mechanical connection bonding force between the first wafer and the second wafer. According to the semiconductor device, the pseudo channels connected with eachother are formed in the bonding layers of the first wafer and the second wafer to improve the pattern distribution of the bonding surfaces of the first wafer and the second wafer, so that the bondingstrength and reliability are improved.
Owner:YANGTZE MEMORY TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products