Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

81 results about "Semiconductor waveguides" patented technology

Single-mode vertical integration of active devices within passive semiconductor waveguides, a method and its applications for use in planar wdm components

The invention discloses a method for monolithic integration of active devices within passive semiconductor waveguides and the application of this method for use in InP-based planar wavelength division multiplexing components of optical communication systems. The epitaxial device is grown in a single run and comprises a number of layers, such that the lower part of the structure acts as a single mode passive waveguide while the upper part of the structure contains a planar PIN diode. The PIN structure is present only in the active waveguide portion and absent in all the passive waveguide portions. The active and passive waveguide portions have substantially similar guiding properties with the exception of a mode tail above a top surface of the passive waveguide portion within the active waveguide portion. As a result, an optical signal portion penetrates the I-layer of the PIN structure and interacts with semiconductor material therein for actively affecting an intensity of the optical signal with no substantial changes in guiding properties of the semiconductor waveguide. Embodiments of invention in the form of monolithically integrated waveguide photodetector, electro-absorptive attenuator and semiconductor optical amplifier are disclosed in terms of detailed epitaxial structure, layout and performance characteristics of the device.
Owner:ENABLENCE

Vertical integration of active devices within passive semiconductor waveguides

The invention discloses a method for monolithic integration of active devices within passive semiconductor waveguides and the application of this method for use in InP-based planar wavelength division multiplexing components of optical communication systems. The epitaxial device is grown in a single run and comprises a number of layers, such that the lower part of the structure acts as a single mode passive waveguide while the upper part of the structure contains a planar PIN diode. The PIN structure is present only in the active waveguide portion and absent in all the passive waveguide portions. The active and passive waveguide portions have substantially similar guiding properties with the exception of a mode tail above a top surface of the passive waveguide portion within the active waveguide portion. As a result, an optical signal portion penetrates the I-layer of the PIN structure and interacts with semiconductor material therein for actively affecting an intensity of the optical signal with no substantial changes in guiding properties of the semiconductor waveguide. Embodiments of invention in the form of monolithically integrated waveguide photodetector, electro-absorptive attenuator and semiconductor optical amplifier are disclosed in terms of detailed epitaxial structure, layout and performance characteristics of the device.
Owner:ENABLENCE

Ferromagnetic-semiconductor composite isolator and method

An exemplary optical isolator, such as a magnetic-semiconductor composite optical isolator, and method for making the same, is provided that includes a semiconductor waveguide and a magnetic-semiconductor composite layer. The semiconductor waveguide includes a guide layer, a first clad layer and a second clad layer. The guide layer includes one or more layers with a first end, a second end, a top, and a bottom, the guide layer allows a light wave incident the first end of the guide layer to propagate in a positive propagation direction, and allows a light wave incident the second end of the guide layer to propagate in a negative propagation direction. The first clad layer and the second clad layer are provided, respectively, relative to the bottom and the top of the guide layer, and the second clad layer has a thickness to allow an optical field penetration through the second clad layer. The magnetic-semiconductor composite layer is provided in the presence of a magnetic field oriented in a desired direction and is positioned relative the second clad layer and at a thickness and index of refraction to receive the optical field penetration through the second clad layer and to attenuate a light wave that propagates in the negative propagation direction more than the attenuation of a light wave that propagates in the positive propagation direction. The magnetic-semiconductor composite optical isolator may be integrated with a semiconductor laser, such as on the same semiconductor substrate.
Owner:KELTON CAPITAL L L C
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products