Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

45results about How to "Direct monitoring" patented technology

Motor starter device having reduced power consumption

A motor starter for use with a motor (20) having a main winding (M) and a start winding (S). The starter has a PTC thermistor (30) connected in series with the start winding (S). A triac (40) is connected between PTC thermistor (30) and a power source line. A control circuit (50) is connected to the power source line for providing a voltage for a gate terminal (G) of triac (40) and an overload relay (60) is connected between the power source (10) and the motor (20). The control circuit (50) preferably includes a current detecting circuit (52) for detecting the inrush current and a voltage generating circuit (54) for generating the voltage in response to the detected inrush current. At the startup of motor (20) the control circuit (50) allows triac (40) to turn on by providing the gate terminal (G) with the voltage based on the inrush current. According to this invention, the power consumption of the start winding S after the startup of the motor (20) can be almost zero thus providing low power consumption. In another embodiment not employing a PTC thermistor, a current detecting circuit and a voltage generating circuit are used to control the on and off states of a first triac (90) which in turn controls the on and off states of a second triac (92) connected in series with the start winding.
Owner:SENSATA TECH MASSACHUSETTS INC

Motor starter device having reduced power consumption

A motor starter for use with a motor (20) having a main winding (M) and a start winding (S). The starter has a PTC thermistor (30) connected in series with the start winding (S). A triac (40) is connected between PTC thermistor (30) and a power source line. A control circuit (50) is connected to the power source line for providing a voltage for a gate terminal (G) of triac (40) and an overload relay (60) is connected between the power source (10) and the motor (20). The control circuit (50) preferably includes a current detecting circuit (52) for detecting the inrush current and a voltage generating circuit (54) for generating the voltage in response to the detected inrush current. At the startup of motor (20) the control circuit (50) allows triac (40) to turn on by providing the gate terminal (G) with the voltage based on the inrush current. According to this invention, the power consumption of the start winding S after the startup of the motor (20) can be almost zero thus providing low power consumption. In another embodiment not employing a PTC thermistor, a current detecting circuit and a voltage generating circuit are used to control the on and off states of a first triac (90) which in turn controls the on and off states of a second triac (92) connected in series with the start winding.
Owner:SENSATA TECH MASSACHUSETTS INC

Acousto-optic leakage monitoring system for nuclear power plant main steam pipeline

An acousto-optic leakage monitoring system for main steam pipeline in nuclear power plant. The system includes an acoustic emission leakage monitoring loop and a spectrum leakage monitoring loop, wherein the signal input ends of the acoustic emission leakage monitoring loop and the signal input ends of the spectrum leakage monitoring loop are respectively arranged at detection points of the main steam pipeline. The signal output ends of the acoustic emission leakage monitoring loop and the signal output ends of the spectrum leakage monitoring loop are communicatively connected to each other through a network switch, and the network switch is sequentially connected with a control unit and a display unit. Compared with the prior art, the acousto-optic leakage monitoring system for the main steam pipeline in nuclear power plant according to the present invention provides early warning before the main steam pipeline leaks and realizes the diversity and redundancy of the main steam pipeline leakage monitoring methods by combining acoustic emission and spectroscopy, so that the detection results are more credible, and the maintenance cost after installation is extremely low. The detection sensitivity is higher and the response time is shortened, which significantly improves the response speed after leakage is found and provides a larger safety margin.
Owner:SHANGHAI NUCLEAR ENG RES & DESIGN INST CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products