Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1615 results about "Electro-optic modulator" patented technology

An electro-optic modulator (EOM) is an optical device in which a signal-controlled element exhibiting an electro-optic effect is used to modulate a beam of light. The modulation may be imposed on the phase, frequency, amplitude, or polarization of the beam. Modulation bandwidths extending into the gigahertz range are possible with the use of laser-controlled modulators. The electro-optic effect is the change in the refractive index of a material resulting from the application of a DC or low-frequency electric field.

COTDR (coherent detection based optical time-domain reflectometry) fused long-distance coherent detection brilouin optical time-domain analyzer

The invention discloses a COTDR (coherent detection based optical time-domain reflectometry) fused long-distance coherent detection brilouin optical time-domain analyzer which comprises a narrow-linewidth laser, two couplings, a microwave signal source, an electro-optic modulator, an isolator, a long-distance sensing optical fiber, an optical circulator, a 3 db coupling, a pulse modulator, an Er-doped fiber amplifier, a scrambler, a pulse signal generator, a balancing photoelectric detector, an electrical frequency spectrum analyzer, a data processing module and an acousto-optic modulator. According to the invention, the signal-to-noise ratio of BOTDA (brilouin optical time domain analysis) is improved by using a coherent detection method, a non-local effect of a BOTDA system is reduced in a double-sideband detection mode, and the sensing distance is more than 70 km under the condition of no light amplification such as raman; and according to the invention, the COTDR is fused to a coherent detection based BOTDA system, and the system can run in a breakpoint testing mode, so that the defect that the traditional BOTDA can not run when a sensing fiber has breakpoints and can not carry out positioning on breakpoints is effectively overcome, thereby enhancing the adaptability and practicability of the sensing system.
Owner:NANJING UNIV

Sensing method of optical-fiber Bragg grating laser device

The invention relates to a sensing method with an optical-fiber Bragg grating laser device. An optical-fiber Bragg grating is used as a reflector of the resonant cavity, an active optical fiber capable of generating sufficient gains is added, and a double wavelength/multiple wavelength optical-fiber Bragg grating laser device is formed under the action of a pump light source and used as a sensor. When the outside strain, temperature and other physical quantities act on the sensing system, the beat signal frequency among the double wavelength or multiple wavelength laser can shift, and counter stress, temperature and other physical parameters can be measured precisely by detecting the beat signal frequency information. The invention has the advantages of simple manufacture, stable and reliable operation, stable measurement result and high precision, and is free from the interference of light intensity, polarization and other optical information quantities. The multipoint distribution sensing measurement can be realized in a frequency-division multiplexing mode. An electrooptical modulator is added before the spectrum analyzer starts detection so as to randomly adjust the beat signal frequency, thereby greatly reducing the spectral range of the spectrum analyzer and reducing the detection cost.
Owner:NANJING UNIV

Nanophotonic devices based on quantum systems embedded in frequency bandgap media

The present invention describes nanophotonic materials and devices for both classical and quantum optical signal processing, transmission, amplification, and generation of light, which are based on a set of quantum systems having a discrete energy levels, such as atoms, molecules, or quantum dots, embedded in a frequency bandgap medium, such as artificial photonic crystals (photonic bandgap materials) or natural frequency dispersive media, such as ionic crystals, molecular crystals, or semiconductors, exhibiting a frequency (photonic) bandgap for propagating electromagnetic modes coupled to optical transitions in the quantum systems. If the frequency of one of optical transitions, called the working transition, lies inside the frequency bandgap of the medium, then spontaneous decay of the working transition into propagating photon modes is completely suppressed. Moreover, the excitation of the working transition and a photon form a photon-quantum system bound state lying inside the photonic bandgap of the medium, in which radiation is localized in the vicinity of the quantum system. In a quantum system “wire” or a quantum system “waveguide”, made of spatially disordered quantum systems, or in a chain quantum system waveguide made of a periodically ordered identical quantum systems, wave functions of the photon-quantum system bound states localized on different quantum systems overlap each other and develop a photonic passband lying inside bandgap of the photonic bandgap medium. Photons with frequencies lying inside the photonic passband propagate along the quantum system waveguide. Since the working transition cannot be excited twice, the passband photons interact with each other extremely strongly both in one waveguide and in different waveguides that are located sufficiently close to each other. These unique nonlinear properties of the quantum system waveguides are proposed to use for engineering key nanophotonic devices, such as all-optical and electro-optical switches, modulators, transistors, control-NOT logic gates, nonlinear directional couplers, electro-optical modulators and converters, generators of entangled photon states, passband optical amplifiers and lasers, as well as all-optical integrated circuits for both classical and quantum optical signal processing, including quantum computing.
Owner:ALTAIR CENT

BOTDR (Brillouin Optical Time Domain Reflectometer) for calibrating optical power of reference light and calibrating method thereof

The invention relates to a BOTDR (Brillouin Optical Time Domain Reflectometer) for calibrating optical power of reference light and a calibrating method thereof. The calibrating method comprises the following steps of: acquiring an electric signal of local reference light from a heterodyne photoreceiver on a basis of a traditional BOTDR for heterodyne coherent detection; transmitting the electric signal subjected to analog-to-digital conversion in a computer to be used as the optical power calibrating feedback quantity of the reference light; sending out an instruction by the computer to adjust the output power of a microwave source and change the optical power of the local reference light so that the difference between the optical power of the local reference light and the preset reference light power is smaller than a set value; calibrating the power; and detecting a BOTD signal. In the invention, the BOTDR in a working process can not be influenced by the working environment temperature, a microwave transmission line connecting the microwave source with an electro-optic modulator and different power responses of the electro-optic modulator on microwave signals of different frequencies, the error between the reference light power at different frequency points and the preset power is smaller than a set value, and the accurate measurement of the stress and the temperature is ensured.
Owner:NANJING UNIV

Microwave photonic transceiver based on coherent optical frequency combs

The invention discloses a microwave photonic transceiver based on coherent optical frequency combs. A signal optical frequency comb and a local oscillator optical frequency comb which are coherent are generated through a seed light source module and are each divided into two paths through two beam splitters; for a transmitting module, one path of the signal optical frequency comb is taken and each comb tooth is separated through a de-multiplexing module, a to-be-transmitted intermediate frequency signal is loaded through electro-optical modulation, the modulated signal optical frequency comb and one path of the local oscillator optical frequency comb are combined, and a high-frequency transmitting signal is obtained through photo-electric detection; for a receiving module, the other path of the signal optical frequency comb directly loads a receiving signal through an electro-optical modulator and sends the receiving signal to a signal light input end of an optical mixer, the other path of the local oscillator optical frequency comb is input into a local oscillator light input end of the same optical mixer, and two paths of orthogonal output light signals of the optical mixer are taken to carry out channel cut and coherent detection respectively. The microwave photonic transceiver disclosed by the invention has large real-time processing bandwidth and large dynamic range, and the system consumption is effectively reduced.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS

Stable microwave oscillator

InactiveCN103560380AHigh spectral purityStable Single Mode OscillationSolid masersMicrowave phase shifterBand-pass filter
The invention discloses a stable photoelectric oscillator. The stable photoelectric oscillator comprises a laser device, an electro-optical modulator, a long optical fiber, a photoelectric detector, an amplifier, an electric band-pass filter, an electrically-controlled microwave phase shifter, a high-stability microwave source, a 2*1 wave combiner or directional coupler, a first 1*2 power divider or directional coupler, a second 1*2 power divider or directional coupler, a third 1*2 power divider or directional coupler and a phase locking control module, wherein the phase locking control module comprises a frequency mixer, an electric low pass filter and a servo control module, the output end of the frequency mixer is connected to the input end of the electric low pass filter, and the output end of the electric low pass filter is connected to the input end of the servo control module. According to the stable photoelectric oscillator, an electric injection of the external high-stability microwave source and a phase locking control mechanism are added based on a traditional single-loop OEO structure. Compared with the prior art, the stable photoelectric oscillator has the advantages that insertion loss of an optical link in a resonant cavity is not increased, the high signal to noise ratio of the photoelectric resonant cavity is maintained, and the structural complexity of the stable photoelectric oscillator is lower than that of an existing scheme. The stable photoelectric oscillator is easy to obtain.
Owner:SOUTHEAST UNIV

Unbalanced interferometer based fiber bragg grating (FBG) demodulation system and method

The invention relates to an unbalanced interferometer based fiber bragg grating (FBG) demodulation system and method, belonging to the technical field of fiber optic sensing. The system sequentially passes through a superluminescent diode (SLD) or an amplified spontaneous emission (ASE) broadband light source, an optic isolator, a circulator or a coupler, and a fiber bragg grating and returns back to the circulator or the coupler, and then passes through the coupler, an unbalanced Michelson interferometer with two channels and a Faraday rotator mirror and returns back to an interferometer and the coupler or passes through a Mach-Zehnder interferometer with two channels and the coupler, wherein one channel of the interferometer is wound around a piezoelectric ceramic or an electrooptical modulator, and an acousto-optic modulator, finally passes through a dense wave division multiplexer and a photoelectric detector and is connected with an ARCTAN based PGC (Phase Generation Carrier) signal response demodulation module. The invention has the advantages; by adopting the combination of the an FBG sensor and ARCTAN-based PGC phase modulation, the system has high sensitivity, large dynamic range and good linearity, good response to an abrupt signal and easiness of multiplexing, low cost and easiness of implementing.
Owner:DALIAN UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products