Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

156results about How to "Improve DC Superposition Characteristics" patented technology

Open magnetic circuit stacked coil component and process for producing the open magnetic circuit stacked coil component

ActiveCN101911221AReduced variance in sintering shrinkageSuppress defects such as cracksInorganic material magnetismTransformers/inductances detailsSuperimpositionEngineering
Disclosed is an open magnetic circuit stacked coil component that is less likely to cause defects between a nonmagnetic layer and a magnetic layer, causes no significant deterioration in temperature characteristics of inductance, even when the thickness of the nonmagnetic layer is reduced, and has excellent direct-current superimposition characteristics. An open magnetic circuit stacked coil component (1) comprises a laminate (11), formed of magnetic layers (2) stacked on top of each other, a coil (L) provided within the laminate (11), and a nonmagnetic layer (4) provided within the laminate (11) so as to cross a magnetic path formed by energization of the coil (L). The nonmagnetic layer is formed of a nonmagnetic material of a Zn-Cu-based ferrite. The magnetic layer is formed of a magnetic material. The magnetic material comprises 100 parts by weight of an Ni-Zn-Cu-based magnetic ferrite material and 0.1 to 2.0 parts by weight, in terms of Co3O4, of Co added to the Ni-Zn-Cu-based magnetic ferrite material. According to the above constitution, the difference in firing shrinkage between the magnetic layer and the nonmagnetic layer can be reduced to suppress the occurrence of cracks and the like, and, even when Ni is diffused from the magnetic layer to thenonmagnetic layer upon firing, the temperature characteristics of the inductance are rendered flat.
Owner:MURATA MFG CO LTD

Multilayer coil part

This multilayer coil part has a magnetic body section (2) that is made of an Ni-Zn system ferrite material and a Cu-based coil conductor (3) that has been wound into a coil shape. The coil conductor (3) is buried inside the magnetic body section (2) to form a part element body (1). The part element body (1) is divided into a first region (6) that is located close to the coil conductor (3) and a second region (7) that comprises the region other than the first region (6). The grain size ratio (D1/D2) between the average crystal grain size (D1) of the magnetic body section (2) in the first region (6) and the average crystal grain size (D2) of the magnetic body section (2) in the second region (7) is equal to or lower than 0.85. The molar quantity of CuO content in the ferrite material is set to 6 mol% or less, and the ferrite material is baked in a reductive atmosphere with the oxygen partial pressure being equal to or lower than the Cu-Cu2O equilibrium oxygen partial pressure. Thus, a multilayer coil part that exhibits not only little fluctuation of inductance and excellent thermal shock resistance when subjected to a thermal shock or an external stress but also excellent direct-current superposition characteristics can be obtained without requiring any complicated step.
Owner:MURATA MFG CO LTD

Method for manufacturing [mu]26 composite magnetic powder core

The invention discloses a method for manufacturing a [mu]26 composite magnetic powder core. The technical scheme is as follows: after two or more alloy powders from mechanically crushed sendust, aerosolized sendust, aerosolized iron-silicon, aerosolized iron-nickel and aerosolized iron-nickel-molybdenum are selected and are fully mixed, phosphoric acid passivation treatment and drying are performed, then one or more from silicon oxide, aluminum oxide, calcium oxide and magnesia calcinata, sodium silicate, and deionized water are successively added to the alloy powders subjected to the passivation processing and drying for insulation coating, and afterwards, the [mu]26 composite magnetic powder core is prepared after press molding, heat treatment and surface coating. The alloy powders used in the method have the advantages of mature technology, stable performance and relatively low cost so that the prepared magnetic powder core has quite high cost performance and stability. Such oxides as the silicon oxide, the aluminum oxide, the magnesia calcinata and the like and such inorganic materials as the sodium silicate and the like are used for coating adhesion so that the obtained composite magnetic powder core has the advantages of high stability, high reliability, low cost, high safety and facilitated production.
Owner:天通(六安)新材料有限公司

Method for manufacturing [mu]90 composite magnetic powder core

InactiveCN107369514AImprove power densitySuitable for low voltage and high currentTransportation and packagingMetal-working apparatusSendustLow voltage
The invention discloses a method for manufacturing a [mu]90 composite magnetic powder core. The [mu]90 composite magnetic powder core is made by compounding two or more alloy powders. The alloy powders comprise the following components: mechanically crushed sendust, aerosolized sendust, aerosolized iron-silicon, aerosolized iron-nickel and aerosolized iron-nickel-molybdenum. The manufacturing method comprises the steps of powder compounding, passivation, insulation coating, press molding, heat treatment and surface coating. The alloy powders complement each other in terms of performance so that the performance of the prepared composite powder core is close to that of a commercially available amorphous magnetic powder core. The alloy powders used in the method have the advantages of mature technology, stable performance and relatively low cost so that the prepared magnetic powder core has quite high cost performance and stable characteristics. The composite magnetic powder core with magnetic permeability of [mu]90 has excellent physical properties and magnetic properties. By use of the magnetic powder core prepared by the invention, the development requirements of an existing electronic industry for low-voltage high current, high power density and high frequency are greatly satisfied.
Owner:天通(六安)新材料有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products