Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

42 results about "Cholesterol biosynthesis" patented technology

Slightly less than half of the cholesterol in the body derives from biosynthesis de novo. Biosynthesis in the liver accounts for approximately 10%, and in the intestines approximately 15%, of the amount produced each day.

Treatment and Prevention of Diabetes and Obesity

The invention encompasses compositions and methods for effectively treating and / or preventing diabetes and / or obesity. This is accomplished by totally addressing the multiple mechanisms that lead to such conditions. The invention includes compositions comprising a combination of agents that effectively suppress, regulate or interfere with the various biochemical processes and mechanisms that lead to diabetes and obesity. The inventive compositions used for administration to human and other mammalian subjects comprise (1) at least one agent capable of modulating expression and / or activity of one or more of peroxisome activated protein receptor gamma (PPAR-γ), CAAT / enhancer binding protein-α (C / EBPα) and Sterol Regulatory Element-Binding Protein (SREBP-1); (2) at least one agent capable of activating Wnt / β-catenin pathway; (3) at least one agent capable of activating the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway; (4) at least one agent that inhibits the activity of pro-oxidants including reactive nitrogen species and reactive oxygen species (ROS); (5) at least one agent that suppresses one or more of inflammatory mediators including interleukins IL-1α, IL-1β, IL-6, NF-κB, TNF-α, matrix metalloproteinases (MMPs) and prostaglandin E2 (PGE2); (6) at least one agent capable of enhancing glucose transporter (GLUT4) and / or inhibiting glucose transporter GLUT2; (7) at least one agent that induces the expression of and / or activates adiponectin and (8) at least one agent that induces the expression of and / or activates sirtuin (SIRT1). The active agents for use herein are natural materials such as phytonutrients, vitamins and minerals. Compositions with combinations of such natural agents have the ability to prevent, reduce or treat diabetes and obesity by (a) clearing glucose and fatty acids from blood, (b) reducing the number of adipose cells and fat storage, (c) interfering with fat, glucose, and cholesterol biosynthesis, and (d) promoting fat and glucose oxidation.Since the present compositions are aimed toward normalizing metabolism and energy expenditure and managing oxidative stress and inflammation, they are also beneficial in relation to physical activity, in particular performance, endurance, fatigue and recovery during intensive and continuous exercise / exertion.
Owner:SUMMIT INNOVATION LABS LLC

Anti-obesity and anti-dyslipidemic effects of oil palm phenolics in preventing atherosclerosis and cardiovascular disease

Water-soluble phenolics from the oil palm (Elaeis guineensis) possess significant antioxidant and health-promoting properties. This invention documents the effects of administering oil palm phenolics to mice, with the aim of identifying whether these compounds possess significant anti-obesity or anti-dyslipidemics properties for the prevention of atherosclerosis and cardiovascular disease. We first explored the gene expression changes caused by oil palm phenolics in livers of mice given a low-fat normal diet, in which fatty acid beta oxidation genes were up-regulated while five cholesterol biosynthesis genes were down-regulated. In addition, the weight gain of mice given oil palm palm phenolics was delayed, suggesting that oil palm phenolics may play a role in delaying the onset of obesity. Using Illumina microarrays, we found that the atherogenic diet caused oxidative stress, up-regulated the inflammatory response and increased the turnover of metabolites and cells in the liver, spleen and heart. In contrast, we found that oil palm phenolics showed signs of attenuating the effects of the atherogenic diet in mice. The extract increased unfolded protein response in the liver, while attenuated antigen presentation and processing in the spleen. Oil palm phenolics also increased the expression of antioxidant genes in the heart. A majority of the genes regulated by oil palm phenolics in the different organs showed a difference in direction of regulation when compared to the atherogenic diet.
Owner:MALASIAN PALM OIL BOARD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products