Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

51 results about "Laser metal deposition" patented technology

Laser metal deposition is a generative manufacturing method for metals. Internationally, it is generally known as "laser metal deposition", abbreviated to LMD.

Complicated thin-walled workpiece formation system and method based on progressive formation and additive manufacturing

Disclosed is a complicated thin-walled workpiece formation system and method based on progressive formation and additive manufacturing. The system comprises a progressive forming system, a laser metal deposition system and a control system. The progressive forming system comprises a worktable, a three-dimensional movement platform and an electric spindle, wherein the electric spindle is mounted on the three-dimensional movement platform and provided with a tool bit, and the worktable is arranged below the electric spindle and provided with a clamp. The laser metal deposition system comprises a fiber laser, a laser head, a powder feeder and a nozzle. The formation method is to clamp the plate to the fixture of the worktable, the control system controls the electric spindle to drive the tool bit to form the sheet layer by layer and to form the thin-walled shell; and then through laser, metal powder is fused and deposited on the thin-walled shell, and the block-type characteristics are formed. The complicated thin-walled workpiece formation system can realize the small batch and efficient manufacture of the complicated thin-walled workpiece, and has the advantages of saving material, and eliminating the need of mold and the like, and the manufacturing cycle of the complicated thin-walled workpiece is shortened.
Owner:SHANDONG UNIV

Online detecting and eliminating device and method for melt channel material defects in laser metal forming

The invention discloses an online detecting and eliminating device and method for melt channel material defects in laser metal forming. The device and method are suitable for a laser metal deposition forming process. The device comprises four optical fiber type double-color temperature gauges, and four temperature measuring probes of the optical fiber type double-color temperature gauges are fixed to the left side, the right side, the front side and the back side of a coaxial powder feeding nozzle of a forming system correspondingly; detection aiming points of the four temperature measuring probes are aligned with the left side, the right side, the front side and the back side of a forming scanning laser spot on a forming plane correspondingly, the detection aiming points are away from the center of the laser spot by a certain micro-distance, and the four temperature measuring probes, the coaxial powder feeding nozzle and a laser beam move together; during forming, when the coaxial powder feeding nozzle and the laser beam conduct forming scanning in any one of the -X direction, the X direction, the -Y direction and the Y direction, the temperature measuring probe located at the side opposite to the scanning direction of the coaxial powder feeding nozzle is used for detecting the temperature of the position, away from the laser spot by a certain micro-distance, of a high-temperature melt channel, and when the temperature mutates abnormally, it is judged that the material defects exist in the position, the defect positions are determined, and laser targeted remelting is carried out on the defects.
Owner:XIAN UNIV OF TECH +2

Nuclear power plant control rod driving mechanism hook jaw and preparation method thereof

The invention discloses a nuclear power plant control rod driving mechanism hook jaw and a preparation method thereof. The hook jaw comprises a hook jaw body formed by printing two materials by multiple layers in a sequential stacking manner, and wear resisting layers; and the wear resisting layers are formed on the inner peripheral wall of a shaft pin hole and the outer surface of a tooth tip in an embedding manner. The preparation method comprises the following steps: (S1) a 3D printing manufacturing process is formulated according to the structure of the hook jaw; (S2) the 3D printing manufacturing process is used for sequentially stacking multiple layers to print a hook jaw blank; and (S3) after the hook jaw blank is manufactured by 3D printing, machining equipment is used for machining to form the pin shaft hole, the tooth tip and a hook jaw groove to obtain the molded hook jaw. The material organization of the hook jaw is improved by dint of laser metal deposition, so that each part of the hook jaw manufactured by dissimilar materials is more compact and more uniform, the mechanical performance is greatly improved, the surface wear resistance and the impact resistance are improved, and meanwhile, the yield of the hook jaw and the long-time service reliability are improved.
Owner:CHINA NUCLEAR POWER DESIGN COMPANY +2

Method for preparing CNTs (carbon nanotubes) reinforced high-entropy alloy laser deposition composite material

The invention discloses a method for preparing a CNTs (carbon nanotubes) reinforced high-entropy alloy laser deposition composite material. According to the method, FeCoCrAlCu-SiB6-(Ni/Ag coated-CNTs)mixed powder is deposited on the surface of a TA2 titanium alloy by laser melting with a coaxial powder feeding method in argon atmosphere, an LMD (laser metal deposition) coating is formed, the coating has bcc and fcc structures, hardness of the bcc structure is higher and toughness of the fcc structure is better; a large quantity of CNTs are attached to the surface of ceramic crystallization phase in the coating, growth of the crystallization phase can be effectively inhibited, the organization structure is refined, and therefore, the structure property of the prepared composite material isremarkably enhanced; a high-temperature oxidation test result indicates that high-temperature oxidation property of the CNTs reinforced LMD coating is obviously better than that of a FeCoCrAlCu-SiB6laser deposition layer and the TA2 titanium alloy base material without addition of CNTs. The CNTs reinforced high-entropy alloy laser deposition composite material with compact organization structureand good high-temperature oxidizability can be obtained.
Owner:SHANDONG JIANZHU UNIV

Device and method for refining structure crystalline grains in metal additive manufacturing process

The invention provides a device and method for refining structure crystalline grains in the metal additive manufacturing process. The device comprises a main laser device and an auxiliary laser device. A main laser path and an auxiliary laser path transmit lasers to the same concentration lens through a light combination lens. The concentration lens generates a composite laser spot composed of a main laser spot and an auxiliary laser spot. The auxiliary laser spot is smaller than that of the main laser spot and can move in the main laser spot. By the adoption of the device and method for refining the structural crystalline grains in the metal additive manufacturing process, a bath is formed through the main laser spot, a key hole is formed through the auxiliary laser spot, the key hole ismade to move in a specific manner to achieve the function of stirring the bath, and therefore the structure crystalline grains are refined; the depth and shape of the key hole can be adjusted by adjusting the parameter of the auxiliary laser; the device and method for refining the structure crystalline grains in the metal additive manufacturing process have no limitation to matrix and powder adopted in the laser metal deposition process and are suitable for formation motion in any form, the situation that in the process of refining the structural crystalline grains, after one cladding layer isobtained, the track is repeated is avoided, and high efficiency is achieved.
Owner:XI AN JIAOTONG UNIV

Method for preparing complex thin-wall component through laser metal deposition and follow-up rolling

The invention belongs to the technical field of laser additive manufacturing, and provides a method for preparing a complex thin-wall component through laser metal deposition and follow-up rolling, which comprises the following steps of: preparing materials before laser metal deposition forming; layering a three-dimensional model of the complex thin-wall component; determining laser metal deposition process parameters; determining roll follow-up rolling process parameters; conducting laser printing on the nth layer, and completing follow-up rolling; repeating the step 3 to the step 5; and performing post-treatment on the thin-wall component. The method can solve problems that when an existing laser metal deposition technology is used for preparing a complex special-shaped thin-wall component, component deformation is caused by residual stress, and a laser beam cannot act on the end face of the component, and the problems that the surface quality is poor and the reliability is reduced due to convex-concave peaks caused by interlayer lap joint on the surface of the formed component, and secondary deformation is easily caused during subsequent machining or laser polishing treatment on the surface of the component.
Owner:DALIAN UNIV OF TECH

Laser metal deposition preparation method for boss structure of engine diffuser

The invention discloses a laser metal deposition preparation method for a boss structure of an engine diffuser casing, which comprises the following steps of: outputting a process argument report through early-stage process verification; designing a positioning tool, and designing and manufacturing an anti-deformation follow-up tool; adding allowance to the size of the boss, and simulating the scanning path and reliability of the boss by software to obtain a scanning path program; before preparation, the parts, the shape follow-up tool and the positioning tool need to be assembled and installed, and the atmosphere of inert gas in the preparation process is created by adopting a flexible high-temperature-resistant film; carrying out boss laser metal deposition preparation according to the verified program, and after the temperature of the boss and the surface of the part is reduced, stopping filling the inert gas; putting the tool and the part into a vacuum heat treatment furnace; detecting the prepared boss, and if not, repairing the prepared boss; performing size comparison on the optical three-dimensional scanning model before and after the boss is prepared, wherein a result is a deviation measured value; and the prepared boss is machined. The invention provides a complete set of mature laser metal deposition preparation method for a boss structure of a case of an engine diffuser.
Owner:航发优材(镇江)增材制造有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products