Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1729 results about "Voltage limit" patented technology

Voltage limit 1 simply means you have hit the max power draw for the card settings.

Combined estimation method for lithium ion battery state of charge, state of health and state of function

The invention provides a combined estimation method for lithium ion battery state of charge, state of health and state of function. The combined estimation method comprises the steps that the state of he---alth of a battery is estimated online: open circuit voltage and internal resistance are identified online by adopting a recursive least square method with a forgetting factor, the state of charge is indirectly acquired according to a pre-established OCV-SOC corresponding relation, and then the size of battery capacity is estimated according to cumulative charge and discharge electric charge between two SOC points; the state of charge of the battery is estimated online: the state of charge of the battery is estimated by adopting the Kalman filter algorithm based on a two-order RC equivalent circuit model, and the battery capacity parameter in the Kalman filter algorithm is updated according to the estimation result of battery capacity; and the state of function of the battery is estimated online: the maximum chargeable and dischargeable current is calculated based on the voltage limit and the current limit of the battery according to internal resistance obtained by online identification, and then the maximum chargeable and dischargeable function can be obtained through further calculation.
Owner:TSINGHUA UNIV

Low voltage CMOS circuit for on/off chip drive at high voltage

A low voltage CMOS circuit and method provide output current ability meeting multimode requirements of high voltage off-chip drivers while protecting the CMOS devices from various breakdown mechanisms. The circuit and method utilize intermediate voltages between two power rails and voltage division techniques to limit the voltages to acceptable limits for drain-to-source, gate-to-drain, and gate-to-source of CMOS devices in any chosen technology. The circuit comprises first and second CMOS cascode chains connected between a high voltage power rail, e.g 5 volt and a reference potential power rail, e.g. ground. Each CMOS cascode chain comprises first and second p-type MOS devices in series with first and second n-type MOS devices. An input circuit is coupled to a node at the midpoint of the first CMOS cascode chain. A bias voltage, typically 3.3 volts is connected to the NMOS devices in the first and CMOS cascode chains. A second bias voltage is coupled to the PMOS devices in the first and second CMOS cascode chains. An output is provided from the second CMOS cascode chain to a third CMOS cascode chain for purposes of providing sufficient pullup capability to drive an output circuit comprising a fourth CMOS cascode chain between the high and reference potentials without exceeding the breakdown mechanisms for any MOS device in the CMOS cascode chains.
Owner:GOOGLE LLC

Resistance variable memory apparatus

A resistance variable memory apparatus (10) of the present invention comprises a resistance variable element (1) which is switched to a high-resistance state when a voltage exceeds a first voltage and is switched to a low-resistance state when the voltage exceeds a second voltage, a controller (4), a voltage restricting active element (2) which is connected in series with the resistance variable element (1); and a current restricting active element which is connected in series with the resistance variable element (1) via the voltage restricting active element (2), and the controller (4) is configured to control the current restricting active element (3) so that a product of a current and a first resistance value becomes a first voltage or larger and to control the voltage restricting active element (2) so that the voltage between electrodes becomes smaller than a second voltage when the element is switched to the high-resistance state, while the controller (4) is configured to control the current restricting active element (3) so that an absolute value of a product of the current and the second resistance value becomes the second voltage or larger and an absolute value of a product of the current and the first resistance value becomes smaller than the first voltage, when the element is switched to the low-resistance state.
Owner:PANASONIC SEMICON SOLUTIONS CO LTD

Successive approximation analog-to-digital converter with pre-loaded SAR registers

A SAR converter having enhanced performance by virtue of effectively pre-loading the SAR's most significant bits with a value that makes the associated DAC output almost equal to the signal to be converted. A normal SAR conversion is then completed with the SAR bits that have not been pre-loaded. The value used to pre-load the most significant bits of the SAR is preferably obtained from a low-resolution, high-speed converter, such as a flash. The range of DAC bits used in the normal SAR part of the conversion may be increased such that errors up to a certain magnitude in the high-speed converter can be corrected. Reducing power consumption of a SAR system can be readily accomplished by reducing comparator supply voltage. For a SAR converter architecture using a CAPDAC array or CAPDAC (capacitor array DAC), fairly large variations in comparator input voltage can be expected under these circumstances. If the input voltage variation becomes too large, damage to the comparator input devices can occur, or inaccuracies may develop. In one embodiment of the invention, the most significant bits are provided by sampling the input signal through a flash ADC that does not suffer from the input voltage restriction described above.
Owner:ANALOG DEVICES INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products