Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

540results about "Gas discharge electrodes" patented technology

Multiprimary color display

A display displays a color image by using a light source of at least four or more primary colors, and at least one color of the light source is yellow. Thus, it is possible to provide a flat panel display that can acquire a wider color reproduction range without sacrificing luminance.
Owner:CANON KK

Transparent electrode and preparation method thereof

Disclosed herein is a transparent electrode featuring the interposition of a nano-metal layer between a grid electrode on a transparent substrate and an electroconductive polymer layer, and a preparation method thereof. The transparent electrode can be produced in a continuous process at high productivity and low cost and can be applied to various display devices.
Owner:SHENZHEN CHINA STAR OPTOELECTRONICS TECH CO LTD

Method of controlling drive of function liquid droplet ejection head; function liquid droplet ejection apparatus; electro-optic device; method of manufacturing LCD device, organic EL device, electron emission device, PDP device, electrophoretic display device, color filter, organic EL; method of forming spacer, metallic wiring, lens, resist, and light diffusion body

In a method of controlling drive of a function liquid droplet ejection head in which a plurality of nozzle arrays are arranged, the nozzle arrays have function liquid droplet ejection amounts which are different from each other per unit nozzle. The drive of the plurality of nozzle arrays is controlled by using a single drive signal having a plurality of ejection pulses corresponding to the plurality of nozzle arrays in one print cycle. Thus, even if a plurality of nozzle arrays having function liquid droplet ejection amounts which are different from each other per unit nozzle are disposed in one function liquid droplet ejection head, easy drive control is possible without lowering printing throughput.
Owner:KATEEVA

Luminescence crystal particle, luminescence crystal particle composition, display panel and flat-panel display

A luminescence crystal particle which emits light upon irradiation with an energy beam and which has a crystal defect density of 5x107 defects / cm2 or less in a region located from the surface of the luminescence crystal particle to a portion as deep as the energy beam reaches.
Owner:SONY CORP

Functional material fixing method and functional material fixing device

It is an object of the present invention to provide a method for fixing a functional material with good accuracy in a prescribed position on a fixing surface. In order to attain this object, the present invention provides a method for fixing a functional material, comprising a droplet ejection step of ejecting a droplet of a functional material dispersed in a solvent onto a fixing surface, and a drying step of locally heating the droplet ejected on the fixing surface and gasifying part of the droplet by irradiating the droplet with a laser beam. According to this method, the droplet can be dried rapidly, heating of the entire substrate is suppressed, and loss of alignment or breakage of wiring or the like caused by the expansion of substrate can be avoided.
Owner:SEIKO EPSON CORP

Method of controlling drive of function liquid droplet ejection head; function liquid droplet ejection apparatus; electro-optic device; method of manufacturing LCD device, organic EL device, electron emission device, PDP device, electrophoretic display device, color filter, organic EL; method of forming spacer, metallic wiring, lens, resist, and light diffusion body

In a method of controlling drive of a function liquid droplet ejection head in which a plurality of nozzle arrays are arranged, the nozzle arrays have function liquid droplet ejection amounts which are different from each other per unit nozzle. The drive of the plurality of nozzle arrays is controlled by using a single drive signal having a plurality of ejection pulses corresponding to the plurality of nozzle arrays in one print cycle. Thus, even if a plurality of nozzle arrays having function liquid droplet ejection amounts which are different from each other per unit nozzle are disposed in one function liquid droplet ejection head, easy drive control is possible without lowering printing throughput.
Owner:KATEEVA

Display and method for manufacturing the same

The present invention provides a display including a substrate and an electrode layer including a plurality of conductors, wherein a silane derivative layer is interposed between the substrate and the electrode layer to increase the bond strength between the substrate and the electrode layer. The invention also provides a method of manufacturing the device.
Owner:SAMSUNG DISPLAY CO LTD

Light-transmitting metal electrode and process for production thereof

The present invention provides a light-transmitting metal electrode including a substrate and a metal electrode layer having plural openings. The metal electrode layer also has such a continuous metal part that any pair of point-positions in the part is continuously connected without breaks. The openings in the metal electrode layer are periodically arranged to form plural microdomains. The plural microdomains are so placed that the in-plane arranging directions thereof are oriented independently of each other. The thickness of the metal electrode layer is in the range of 10 to 200 nm.
Owner:KK TOSHIBA

Method of manufacturing plasma display panel and method of manufacturing plasma display apparatus

Address electrode patterns are formed on a rear surface glass substrate using a silver paste for forming address electrodes, and these patterns are dried. The average particle size of the silver powder in the silver paste is approximately 10 nm, and the softening point of the glass frit is approximately 420° C. The content ratio of the glass frit in the silver paste is set to 5 wt %. Then, a dielectric layer pattern is formed by using glass paste for forming a white dielectric layer so as to cover the address electrode patterns, and this dielectric layer pattern is dried. The glass frit in the glass paste has a softening point of approximately 540° C. Then, the address electrode patterns and the dielectric layer patterns are baked at a temperature of 540° C. Thus, the resin components in the address electrode patterns and the dielectric layer pattern are burnt away, and the glass frit components are softened so as to be fixed onto the rear surface glass substrate.
Owner:PANASONIC CORP

Method for forming electrodes and/or black stripes for plasma display substrate

To provide a method for forming electrodes and / or black stripes for a plasma display substrate, wherein display electrodes, bus electrodes and optionally black stripes for a plasma display panel are formed of the same material by the same dry step, whereby a clear image having reflection prevented, can be displayed on a PDP display device with a low load on the environment, at low costs, with low resistance, without erosion by a dielectric. A method for forming electrodes and / or black stripes for a plasma display substrate, which comprises applying a laser beam to a mask layer formed on a transparent substrate to form openings at areas corresponding to the respective patterns of display electrodes, bus electrodes and optionally black stripes, then continuously forming an antireflection layer to provide an antireflection effect over the entire surface and an electrode layer, and applying again a laser beam to peel off the mask layer and at the same time to remove an unnecessary thin film layer.
Owner:ASAHI GLASS CO LTD

Transparent electrode and its manufacturing method

Disclosed is an indium-free transparent electrode which is excellent in alkali resistance, wet heat stability and etching properties. Specifically disclosed is a transparent electrode mainly containing zinc oxide and tin oxide wherein the taper angle at the edge portion of the electrode is 30-89 DEG . The ratio of zinc atoms to the total of zinc atoms and tin atoms in the transparent electrode (Zn / (Zn + Sn) atomic ratio) is preferably within the range of 0.5-0.9.
Owner:IDEMITSU KOSAN CO LTD

Tubular plasma display

A tubular plasma display (TPD) is composed of an electroded sheet (electroded sheet) attached to an array of plasma tubes. Both the electrode sheet and the plasma tube array contain wire electrodes, which create very electrically conductive lines and the ability to address very large displays. The electroded sheet is composed of a thin flexible polymer substrate with embedded wire sustain electrodes. Each plasma tube is individually sealed and contains a wire address electrode, a hard emissive coating, a color phosphor and a Xenon based plasma gas. Polymer-based color filter coatings may also be applied to the surface of the plasma tubes after they are gas processed and sealed to drastically increase the bright room contrast, brightness, and color purity of the display.
Owner:MOORE CHAD B

Carbon nanotube transparent electrode and method of manufacturing the same

A CNT transparent electrode may have a CNT layer consisting essentially of CNT only, together with a cover layer that may include conductive particles and a polymer. The cover layer may cover an upper and / or a lower portion of the CNT layer. The CNT transparent electrode including the CNT layer which essentially consists of CNT only and does not contain other materials such as a binder or a dispersing agent can exhibit excellent conductivity. When the CNT layer is covered by the cover layer, surface roughness, film uniformity, adhesion between the CNT transparent electrode and the substrate and stability in the process of applying the CNT transparent electrode to devices can be enhanced, compared to the case where only the CNT layer is used.
Owner:SAMSUNG ELECTRONICS CO LTD +1

Plasma-dome PDP

There is disclosed a plasma display panel (PDP) device having one or more substrates and a multiplicity of pixels or sub-pixels. Each pixel or sub-pixel is defined by a hollow Plasma-dome™ filled with an ionizable gas. The Plasma-dome has a flat side and an opposing domed side such as a flat bottom and a domed top or a flat rear and domed front. One or more other sides or edges may also be flat. Two or more addressing electrodes are in electrical contact with each Plasma-dome. A flat base side or domed side of the Plasma-dome shell is in contact with a substrate. The PDP may also include inorganic and organic luminescent materials that are excited by the gas discharge within each Plasma-dome. The luminescent material may be located on an exterior and / or interior surface of the Plasma-dome or incorporated into the shell of the Plasma-dome. Up-conversion and down-conversion materials may be used. The substrate may be rigid or flexible with a flat, curved, or irregular surface.
Owner:IMAGING SYST TECH

Carboxylic ester dispersant and sulfide phosphor paste composition having same

Disclosed herein is a carboxylic ester dispersant shown in the following Formula 1 and a sulfide phosphor paste composition containing the dispersant. The dispersant improves the dispersibility of the sulfide phosphor paste composition and prevents oxidation by a solvent, thus improving processability and the luminescent properties of a phosphor film made from the paste and of a display produced using the film. In Formula 1, n is 1-20.
Owner:SAMSUNG ELECTRONICS CO LTD

Plasma display module and method of manufacturing the same

A plasma display module that can improve the emission efficiency of light, generate a discharge quickly, reduce an address voltage, and be manufactured at lower costs and failure rates, includes a substrate formed of a transparent insulator, a chassis base disposed on a rear side of the substrate, a plurality of barrier ribs formed of a dielectric disposed between the substrate and the chassis base and define discharge cells together with the substrate and the chassis base, a plurality of front discharge electrodes formed in the barrier ribs that surround the discharge cell, a plurality of rear discharge electrodes spaced apart from the front discharge electrodes and formed in the barrier ribs to surround the discharge cell, a fluorescent layer disposed in the discharge cell, a discharge gas filled in the discharge cell, and a plurality of circuit substrates that apply electrical signals to the electrodes by disposing on a rear side of the chassis base.
Owner:SAMSUNG SDI CO LTD

Plasma display apparatus

A plasma display apparatus includes a plasma display panel. Pulse voltage values and / or pulse widths of a variety of drive pulses that are applied to the plasma display panel are adjusted in accordance with the accumulated usage time of the plasma display panel.
Owner:PANASONIC CORP

Rear plate for plasma display panel

Disclosed is a rear plate of a plasma display panel. In the rear plate, barrier ribs are formed through etching after backing, and thus the completed barrier ribs are not deformed. Therefore, each electrode can be exactly located on a central portion between barrier ribs. When a PDP having front and rear plates attached to each other has been completed, optical characteristics of the PDP such as white brightness, color temperature, and contrast, and electric characteristics of the PDP such as voltage margin, power consumption, and electric efficiency, are improved, so that the reliability is improved.
Owner:LG MICRON

Filter and display device having the same

The invention relates to filter and display device having the same. The filter for a display device includes a base substrate, a shielding film formed based on a single transparent base layer, and an adhesive layer adhering the shielding film onto the base substrate. The shielding film which realizes diverse shielding functions in a single sheet is adhered onto the base substrate through a single process, which serves to improve productivity, reduce manufacturing cost, restrain the occurrence of Haze and improve visibility.
Owner:SAMSUNG CORNING CO LTD

Electrode and device using the same

A high-efficiency electron-emitting device that can emit electron with higher luminance at a voltage lower than conventional electron-emitting devices, as a key device of a flat panel display, image pickup device, electron beam device, microwave traveling-wave tube is provided to improve the carrier injection efficiency and enhance luminance of an organic light-emitting device. A film having space charge with a thickness of 50 nm or less is formed on a surface of a conductive material on which irregularities, amorphous or fibrous materials are formed. The film includes compounds of group 3 atoms such as aluminum nitride, boron nitride, aluminum nitride boron, aluminum nitride gallium, boron nitride gallium and nitrogen atoms, and nitride, carbon, silicon, oxygen and boron such as oxides including nitrogen boron carbon, boron carbide, carbon nitride, boron.
Owner:SUGINO TAKASHI +1

Plasma-disc article of manufacture

There is disclosed an article of manufacture comprising a Plasma-Disc™ for use in a plasma display panel (PDP) device having one or more substrates and a multiplicity of pixels or sub-pixels. Each pixel or sub-pixel is defined by a hollow Plasma-Disc™ filled with an ionizable gas. The Plasma-disc has at least two opposing flat sides such as a flat top and flat bottom or a flat rear and flat front. One or more other sides or edges may also be flat. Two or more electrodes are in electrical contact with each Plasma-disc. A flat base side of the Plasma-disc shell is in contact with a substrate and each electrode is in electrical contact with a flat side of the Plasma-disc. The PDP may also include inorganic and organic luminescent materials that are excited by the gas discharge within each Plasma-disc. The luminescent material may be located on an exterior and / or interior surface of the Plasma-disc or incorporated into the shell of the Plasma-disc. Up-conversion and down-conversion materials may be used. The substrate may be rigid or flexible with a flat, curved, or irregular surface.
Owner:IMAGING SYST TECH

Fluorescent substance and fluorescent composition containing the same

The present invention provides a fluorescent substance represented by the following general formula: (A1-xBx)2Si2O7, wherein A is at least one member selected from the group consisting of Gd, Y, Lu and La, B is at least one member selected from the group consisting of rare earth elements other than A and x is a numerical value specified by the formula: 0<x≦0.2 and which can emit light rays having a wavelength falling within the range of ultraviolet, visible and infrared regions in response to, for instance, optical stimuli, electron beam stimuli, electric field stimuli, stress stimuli and radiation stimuli; a fluorescent composition comprising such a fluorescent substance dispersed in a silica glass matrix; and a scintillator obtained using the foregoing substance or composition. These fluorescent substance, fluorescent composition, scintillator material and fluorescent material have high luminous outputs and are excellent in the processability.
Owner:OXIDE

Display and method for manufacturing the same

The present invention provides a display including a substrate and an electrode layer including a plurality of conductors, wherein a silane derivative layer is interposed between the substrate and the electrode layer to increase the bond strength between the substrate and the electrode layer. The invention also provides a method of manufacturing the device.
Owner:SAMSUNG DISPLAY CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products