Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

147results about How to "Exact strength" patented technology

Inertial measurement unit and geomagnetic sensor integrated calibration apparatus and calibration method

InactiveCN106643792AAccurate calculation of specific forceExact strengthMeasurement devicesCarrier systemNavigation system
An inertial measurement unit and geomagnetic sensor integrated calibration apparatus and a calibration method. The invention relates to the technical field of navigation and solves the problems of high calibration device cost and complex calibration methods for an inertial measurement unit in the prior art, and low measurement precision in a compensation technology for a geomagnetic sensor due to error. In the apparatus, a high-resolution long-focus industrial camera is fixedly connected to a dual-antenna GNSS / SINS combined navigation system. The calibration method includes the steps of: 1) measuring position of earth system and an attitude angle of local geo-system by means of the basic combined navigation system; 2) referring to a table to find a theoretical geomagnetic field intensity value, calculating theoretical specific force and angular speed, and calculating the nominal value of a calibrated object on a carrier system through optical reference transmission; 3) collecting measurement values of the to-be-tested IMU and the geomagnetic sensor, optionally arranging a hexahedral tooling to obtain a plurality sets of nominal values and measurement values of the calibrated object, establishing an equation group, and calculating calibration parameters to complete calibration. The apparatus and the method avoid direct mechanical installation and serious electromagnetic interference on the geomagnetic sensor due to the calibration apparatus, and improve accuracy and reliability of the calibration of the geomagnetic sensor.
Owner:CHANGCHUN INST OF OPTICS FINE MECHANICS & PHYSICS CHINESE ACAD OF SCI

Method for predicting effective stress relaxation coefficient of polymer matrix composite

The invention provides a method for predicting the effective stress relaxation coefficient of a polymer matrix composite.The method includes the steps that firstly, a linear viscoelatic material constitutive equation in a time intra-domain integral form is established based on the Boltzmann superposition principle; then the effective stress relaxation rigidity of the polymer matrix composite formed by periodic unit cells is defined; then a mesomechanics model for solving an effective stress relaxation rigidity matrix of the polymer matrix composite is established based on the variation asymptotic homogenization theory; finally the effective stress relaxation rigidity of the polymer matrix composite is predicted based on the established mesomechanics model.According to the method, attributes of different materials in different directions can be obtained in the one-time solving process, and compared with a method in which rerunning is conducted under different loading conditions, the method is simpler, more convenient, more efficient and rapider.The calculated effective stress relaxation coefficient is consistent with the precision of a wave function, no more approximation relations need to be introduced, calculation precision is higher, and the strength and service life of the polymer matrix composite are predicted more accurately.
Owner:CHONGQING UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products