Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

100results about How to "High-density mounting" patented technology

Flat magnetic element and power IC package using the same

A planar magnetic device 1 including a first magnetic layer 3, a second magnetic layer 5, and a planar coil 4 disposed between the first magnetic layer 3 and the second magnetic layer 5, wherein magnetic particles 7 having a shape ratio S / L of 0.7 to 1 when a length of a long axis is L and a length of a short axis orthogonal to the long axis is L are filled in a gap W between coil wirings of the planar coil 4. According to the planar magnetic device 1, it is possible to realize a planar magnetic device such as an inductor reduced in height by using fine particles that enable to effectively obtain a large inductance value.
Owner:KK TOSHIBA +1

Surface-mounted LED and light emitting device

A surface-mounted LED including a base having heat conductivity, an insulative wiring board fixed to the base and including a conductive pattern and a mounting hole, a light emitting element chip mounted on a mounting area exposed by the mounting hole of the wiring board, and a reflective frame having heat conductivity and fixed to the base and thermally coupled therewith, to surround the light emitting element chip, heat generation from the light emitting element chip being released through both the base and the reflective frame, or either one thereof.
Owner:CITIZEN ELECTRONICS CO LTD

Optical waveguide, optical interconnection component, optical module, opto-electric hybrid board, and electronic device

In accordance with the present invention, an opto-electric hybrid board in which optical wiring is freely disposed without restriction by the arrangement of electrical elements and the like, and in which high-density mounting of electrical wiring and optical wiring is possible, and an electric device including this opto-electric hybrid board are provided. An opto-electrical hybrid board (1000) of the present invention has an optical waveguide (1), an optical connector disposed at an end section of the optical waveguide (1), and an opto-electric conversion section (4) disposed below the optical waveguide (1), and a motherboard (electrical wiring board) (5) disposed below the opto-electric conversion portion (4). Of these, the optical waveguide (1) includes a core layer (13) including a plurality of core sections (14) being configured to intersect with each other at one plane and side surface cladding sections, and a mirror (optical path conversion section) 17 converting the optical path of the core sections (14). Also, between the optical waveguide (1) and the motherboard (5) is connected via an electrical connector and preferably both the optical waveguide (1) and the motherboard (5) are detachable.
Owner:SUMITOMO BAKELITE CO LTD

Semiconductor device and manufacturing method thereof

To provide a semiconductor device that is capable of reduction in thickness and high-density mounting, and that is simple in manufacturing process and convenient for use. A wiring substrate is formed with a plurality of opening portions. In each of the opening portions, a lower chip formed by a wafer-level chip size package (WCSP) is received, and an upper chip is placed on the lower chip. The composite including them is sealed by a sealing body such as epoxy resin. Internal connection terminals of each lower chip are electrically connected to pads of the corresponding upper chip via wirings, through holes and bonding posts of the wiring substrate, and wires.
Owner:LAPIS SEMICON CO LTD

Method for producing a capacitor-embedded circuit board

A capacitor-mounted metal foil of the present invention is provided with a metal foil and a plurality of capacitors formed on the metal foil. Each of the capacitors includes a conductive layer disposed above the metal foil, and a dielectric layer disposed between the metal foil and the conductive layer.
Owner:PANASONIC CORP

Electronic Element, Electronic Element Device Using the Same, and Manufacturing Method Thereof

An electronic element including an electronic element base and electrodes each of which has a first electrode having a surface composed of at least Al or an Al alloy and a second electrode composed of a metal nanoparticle sintered body and bonded to the first electrode. A bonding interface between the first electrode and the second electrode has a multilayer structure including, from the side of the first electrode to the side of the second electrode, (a) a first layer primarily composed of Al, (b) a second layer primarily composed of an Al oxide, (c) a third layer primarily composed of an alloy of Al and a constituent element of metal nanoparticles, and (d) a fourth layer primarily composed of the constituent element of the metal nanoparticles.
Owner:MURATA MFG CO LTD

Cable connection interface for rack mount apparatus, and rack mount apparatus

A rack mount apparatus is provided in an optical transmission apparatus. The rack mount apparatus includes a rack, a shelf mounted in the rack and a cross-sectional L-shaped Panel installed in the rack under a device to be rotatable so as to take an opened position and a closed position. This enables not only an easy and reliable connection of an interface cable in the rack mount apparatus without imposing a stress thereon but also a flexible determination or change of a connection position of the interface cable and even considerable improvement of the working efficiency.
Owner:FUJITSU LTD

Electronic component and method of manufacturing electronic component

An electronic component comprises an element body and an outer electrode. The element body has a pair of end faces opposing each other, a pair of main faces opposing each other while extending so as to connect the pair of end faces to each other, and a pair of side faces opposing each other while extending so as to connect the pair of main faces to each other. The outer electrode is formed on the end face side of the element body and covers a portion of the main and side faces adjacent to the end face. At least a surface of an electrode portion of the outer electrode located on the side face side thereof is covered with an insulating layer.
Owner:TDK CORPARATION

Connection structure of printed wiring board

A connecting structure is for a printed wiring board to be electrically connected to a FPC. The FPC includes a substrate and electro-conductive portions. The printed wiring board includes an insertion opening provided on an edge surface thereof, and line connecting terminals formed on an inner wall face of the insertion opening. A dual in-line contact member including first contact members is fixed to the top end portion of the FPC. Each first contact member includes a main body, and a first arm and a second arm extending from the main body generally in parallel to each other. Furthermore, the first arm and the second arm are bent at bent portions so as to form curves protruding away from each other. With the present embodiment, at least one of the first arm and the second arm press the corresponding line connecting terminal provided within the insertion opening at the bent portion thereof by inserting the FPC to the insertion opening of the printed wiring board. Thus, the FPC is connected to the edge surface of the printed wiring board. This improves the freedom from the perspective of design of the wiring pattern as well as allowing mounting of circuit components with high circuit density.
Owner:JST MFG CO LTD

Differential transmission circuit, optical module, and information processing system

A differential transmission circuit includes a pair of transmission line conductors and a ground conductor layer, wherein the pair of transmission line conductors include a first straight line region where both the pair of transmission line conductors extend in parallel to each other in a first direction with a first width in a first layer, a first cross region where one of the pair of transmission line conductors is formed in the first layer, the other thereof is formed in a second layer, and the pair of transmission line conductors cross the each other in a three-dimensional manner, the first cross region being disposed on the front side of the first straight line region, and wherein each of the widths of the pair of transmission line conductors in the first cross region is smaller than the first width.
Owner:LUMENTUM JAPAN INC

Heater that attaches electronic component to and detaches the same from substrate

A heater that attaches an electronic component having a ball grid array structure to and detaches the electronic component from a substrate on which the electronic component operates includes a body fixed onto the electronic component, and a heating element, provided on the body, which heats and melts soldering balls having the ball grid array structure when receiving power supply.
Owner:FUJITSU LTD

Three-dimensionally integrated semicondutor device and method for manufacturing the same

A wiring substrate has, on each of opposite faces thereof, connection pad portions to which various circuit elements are connected, and wiring traces for connecting the connection pad portions. The wiring substrate also has a through wiring portion for establishing mutual connection between the connection pad portions and the wiring traces on the front face and those on the back face. A post electrode component is formed such that it includes a plurality of post electrodes supported by a support portion. A semiconductor chip is attached to the back face of the wiring substrate, and is connected to the connection pad portions on the back face. After the post electrode component is fixed to and electrically connected to the wiring traces at predetermined positions, and resin sealing is performed, the support portion is separated so as to expose end surfaces of the post electrodes or back face wiring traces connected thereto. Another circuit element is disposed on the front face of the wiring substrate, and is connected to the connection pad portions on the front face.
Owner:NAT UNIV CORP KYUSHU INST OF TECH (JP)

Connection structure for printed wiring board

The present invention relates to a connection structure for a printed wiring board to be electrically connected to a FPC. The FPC has an elongated substrate, and plural conductors are laminated on a surface of the substrate for extending along an axial direction of the substrate. The printed wiring board has an insertion opening provided at an edge surface for being inserted by a top end portion of the FPC, and plural line connecting terminals formed on an internal wall surface of the insertion opening. The top end portion of the FPC has a slider including plural elastic deformable first contacts, and a first housing for holding the plurality of contacts. The FPC is inserted into the insertion opening of the printed wiring board such that one end of the first contact presses the conductor and the other end of the first contact presses the line connecting terminal. The FPC can be connected to the printed wiring board on an edge surface thereof, allowing circuit elements to be mounted in high density, and improving freedom in designing wiring patterns.
Owner:JST MFG CO LTD

Anisotropic conductive film and method for producing the same

An anisotropic conductive film, and its production method, especially suitable for mounting a semiconductor package and sufficiently satisfying the requirements of higher density mounting because short circuit does not occur in the plane direction of the film even if the pitch of electrodes is small, or suitable for mounting a contact probe because conductive connection not fused with a high current can be ensured with a lower pressure and even a high frequency signal can be dealt with. The anisotropic conductive film contains metal powder having such a shape that many fine metal particles are linked as a conductive component, wherein the length of the chain of metal powder is set not longer than the distance between adjacent electrodes being bonded conductively when a semiconductor package is mounted, and the diameter of the chain is set in the range of 1 μm-20 μm when a contact probe is mounted. At least a part of the film is formed while orienting a chain formed of a paramagnetic metal with a magnetic field.
Owner:SUMITOMO ELECTRIC IND LTD

Semiconductor device and fabrication method thereof

The present invention provides a semiconductor device including a first semiconductor element to be bonded to a wiring board in a flip-chip bonding manner, a resin peripheral wall provided on the wiring board in such a manner as to surround the first semiconductor element, a sealing resin poured so as to fill a space surrounded by the resin peripheral wall and then hardened, and a second semiconductor element provided in such a manner that a back surface thereof is fixed on an upper surface of the sealing resin and a electrode provided on a front surface thereof is connected to a segment of wiring on the wiring board by means of a bonding wire, and provides a method of fabricating the semiconductor device. With this configuration, since semiconductor elements of arbitrary outer sizes can be stacked to each other without any limitation by the outer sizes of the semiconductor elements, even in a combination of any outer shapes of semiconductor elements vertically stacked to each other, the semiconductor elements can be mounted at a high density.
Owner:SONY CORP

Semiconductor device mounting structure

A semiconductor device mounting structure is provided that includes an electrically insulating layer including a plurality of layers of electrically insulating substrates, a first semiconductor device, a second semiconductor device, a heat dispersion portion provided at a main surface of the electrically insulating layer, a first heat-conducting path connecting the heat dispersion portion and the first semiconductor device, and a second heat-conducting path connecting the heat dispersion portion and the second semiconductor device, wherein the first semiconductor device is arranged between at least a portion of the heat dispersion portion and the second semiconductor device. This provides a semiconductor device mounting structure that, in addition to being capable of high-density mounting of a plurality of semiconductor devices, is capable of dispersing with good efficiency heat generated by the plurality of semiconductor devices.
Owner:PANASONIC CORP

Integrated circuit and layered circuit provided therewith

An integrated circuit includes multiple quadrangular coils including a first wiring and a second wiring that are alternately connected to each other and formed on different layers in a manner perpendicularly intersecting each other. The coils are partly overlapped with each other in a diagonal direction that connects opposite corners of the coils. The coils preferably have the same structures. A target coil among the coils preferably partly overlaps with another coil among the coils in two diagonal directions that connect opposite corners of the target coil.
Owner:THRUCHIP JAPAN INC

Varistor

A varistor 1 comprises a varistor element 10, a pair of external electrodes 30a, 30b on one main side of the varistor element 10 and a resistor 60 on the same main side, wherein the resistor 60 is formed so as to connect the pair of external electrodes 30a, 30b. The varistor element 10 contains zinc oxide as the main component and Ca oxides, Si oxides and rare earth metal oxides as accessory components, wherein the proportion X of the calcium oxides in terms of calcium atoms is 2-80 atomic percent with respect to 100 mol of the main component and the proportion Y of the silicon oxides in terms of silicon atoms is 1-40 atomic percent with respect to 100 mol of the main component, X / Y satisfying formula (1) below, and the external electrodes and resistor contain oxides other than bismuth oxide and copper oxide.1≦X / Y<3  (1)
Owner:TDK CORPARATION

Electronic component package and method for producing electronic component package

Disclosed is an electronic component package 100 including a circuit board 10, an electronic component 20, and an adhesive layer 30. The circuit board 10 is provided with an electrically-conductive conductor post 16 which is buried in a base member 12, and a solder layer 18 which is provided at the front end 13 of the conductor post 16 while exposed from a surface 121 of the base member 12. An electrode pad 24 having a metal layer 22 mounted thereon is provided on the main surface 26 of the electronic component 20. The adhesive layer 30 contains a flux activating compound, and bonds the surface 121 of the base member 12 and the main surface 26 of the electronic component 20. Then, the metal layer 22 and the solder layer 18 are metal-bonded.
Owner:SUMITOMO BAKELITE CO LTD

Printed wiring board and method of manufacturing the same

InactiveUS6986917B2Generation of stress of the solder resist is reducedConductor circuit is improvedDecorative surface effectsSemiconductor/solid-state device detailsResistElectrical conductor
A solder resist comprising a thermosetting resin is printed on a surface of an insulating board (7) having a conductor circuit (6). The solder resist is then heat-cured to form an insulating film (1) having a low thermal expansion coefficient. A laser beam (2) is then applied to the portion of the insulating film in which an opening is to be formed, to burn off the same portion for forming an opening (10), whereby the conductor circuit (6) is exposed. This opening may be formed as a hole for conduction by forming a metal plating film on an inner surface thereof. It is preferable that an external connecting pad be formed so as to cover the opening. The film of coating of a metal is formed by using an electric plating lead, which is preferably cut off by a laser beam after the electric plating has finished.
Owner:IBIDEN CO LTD

Hard disk drive and wireless data terminal using the same

A hard disk drive is provided with a platter, a spindle motor for driving the platter, an arm with a magnetic head attached to a distal end thereof, a voice coil motor for driving the arm, a first circuit substrate, and a drive casing for accommodating and electrically shielding the platter, spindle motor, arm, voice coil motor, and first circuit substrate. The first circuit substrate has a multilayer substrate, a plurality of digital ICs that is embedded as bare chips in the multilayer substrate, and a bus line for connecting the digital ICs. The digital ICs are disposed in a mutually horizontal configuration.
Owner:TDK CORPARATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products