Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

309results about How to "Reduced responsiveness" patented technology

Modification of airways by application of energy

InactiveUS7198635B2Reduce plugging of the airwayPrevent the airway from being able to constrictElectrotherapySurgical needlesPatient complianceObstructive Pulmonary Diseases
This relates to methods and devices for treating reversible chronic obstructive pulmonary disease, and more particularly, relates to a device for exchanging energy with airway tissue such as that found in the airway of human lungs. The exchange of energy with this airway tissue in the airways reduces the ability of the air ways to constrict and / or reduces the resistance within the airway to the flow of air through the airway. This also relates to a method for decreasing responsiveness or decreasing resistance to airflow of airways involves the transfer of energy to or from the airway walls to prevent or reduce airway constriction and other symptoms of lung diseases. The treatment reduces the ability of the airway to contract during an acute narrowing of the airways, reduces mucus plugging of the airways, and / or increases the airway diameter. The methods according to the present invention provide a longer duration and / or more effective treatment for lung diseases than currently used drug treatments, and obviate patient compliance issues. This also includes additional steps that reduce the ability of the lung to produce at least one of the symptoms of reversible obstructive pulmonary disease and to reduce the resistance to the flow of air through a lung.
Owner:BOSTON SCI SCIMED INC

Modification of airways by application of energy

InactiveUS20070100390A1Reduce plugging of the airwayPrevent the airway from being able to constrictElectrotherapySurgical needlesPatient complianceObstructive Pulmonary Diseases
This relates to methods and devices for treating reversible chronic obstructive pulmonary disease, and more particularly, relates to a device for exchanging energy with airway tissue such as that found in the airway of human lungs. The exchange of energy with this airway tissue in the airways reduces the ability of the air ways to constrict and / or reduces the resistance within the airway to the flow of air through the airway. This also relates to a method for decreasing responsiveness or decreasing resistance to airflow of airways involves the transfer of energy to or from the airway walls to prevent or reduce airway constriction and other symptoms of lung diseases. The treatment reduces the ability of the airway Lo contract during an acute narrowing of the airways, reduces mucus plugging of the airways, and / or increases the airway diameter. The methods according to the present invention provide a longer duration and / or more effective treatment for lung diseases than currently used drug treatments, and obviate patient compliance issues. This also includes additional steps that reduce the ability of the lung to produce at least one of the symptoms of reversible obstructive pulmonary disease and to reduce the resistance to the flow of air through a lung.
Owner:BOSTON SCI SCIMED INC

Resistance-type gas sensor based on graphene, stannic oxide and zinc oxide composite, preparation method and application thereof

The invention relates to a resistance-type gas sensor based on a graphene, stannic oxide and zinc oxide composite, a preparation method and application thereof, and belongs to the technical field of gas sensors. The gas sensor is composed of a monocrystalline silicon substrate, a silicon dioxide layer, a titanium adhesion layer, interdigital platinum electrodes and a gas sensitive film covering the silicon dioxide layer and the surfaces of the interdigital platinum electrodes in sequence; the structure of the titanium adhesion layer is the same as that of the interdigital platinum electrodes, and the gas sensitive film is the graphene, stannic oxide and zinc oxide ternary composite; the ternary composite is prepared by mixing graphene, stannic oxide and zinc oxide and is of a three-dimensional porous structure. Before and after the gas sensitive film makes contact with gas to be tested, the resistance of the gas sensitive film can change, and the sensitivity of the sensor can be obtained by measuring resistance changes between the interdigital platinum electrodes. The sensor has high response sensitivity, rapid response recovery rate and good response reversibility at room temperature, and the problem that the a stannic oxide and zinc oxide gas sensor can work only at high temperature is solved.
Owner:JILIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products