Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

49 results about "Cytochrome P450 reductase" patented technology

Cytochrome P450 reductase (EC 1.6.2.4; also known as NADPH:ferrihemoprotein oxidoreductase, NADPH:hemoprotein oxidoreductase, NADPH:P450 oxidoreductase, P450 reductase, POR, CPR, CYPOR) is a membrane-bound enzyme required for electron transfer from NADPH to cytochrome P450 in the endoplasmic reticulum of the eukaryotic cell.

Recombinant microorganism for preparing dharma diene and protopanoxadiol and construction method thereof

The invention discloses a recombinant microorganism for preparing dharma diene and protopanoxadiol and a construction method of the recombinant microorganism. The construction method of the recombinant bacteria comprises a step of adding dharma diene synthase, protopanoxadiol synthase and nicotinamide adenine dinucleotide phosphate - cytochrome P450 reductase encoding gene into saccharomyces cerevisiae to obtain recombinant bacteria I. According to the recombinant microorganism for preparing the dharma diene and the protopanoxadiol and the construction method of the recombinant microorganism, by means of homologous recombination, the dharma diene synthase, the protopanoxadiol synthase and the nicotinamide adenine dinucleotide phosphate - the cytochrome P450 reductase encoding gene are all added into the saccharomyces cerevisiae to obtain the initial recombinant bacteria, and the effect that the initial recombinant bacteria can produce trace amount of the dharma diene and trace amount of the protopanoxadiol is discovered; tHMG1 activity of the initial recombinant bacteria is further improved, and therefore intermediate recombinant bacteria are obtained, and by means of the intermediate recombinant bacteria, the yield of the dharma diene and the yield of the protopanoxadiol are significantly increased; the activity of one or two or three of ERG1, ERG9 and ERG20 are improved on the basis of the intermediate recombinant bacteria, and the effect that the recombinant bacteria which can be used to increase the yield of the dharma diene and the yield of the protopanoxadiol are constructed is also discovered. By means of the recombinant microorganism for preparing the dharma diene and the protopanoxadiol and the construction method of the recombinant microorganism, the foundation is laid for artificially synthesizing the dammar diene and the protopanoxadiol.
Owner:TIANJIN INST OF IND BIOTECH CHINESE ACADEMY OF SCI +1

Method for efficient enzyme catalytic synthesis of sanguinarine and chelerythrine

The invention discloses a method for efficient enzyme catalytic synthesis of sanguinarine and chelerythrine. The method comprises the following steps: respectively screening optimal genes with high expression efficiency from a known protopine-6-hydroxylase gene, a dihydrobenzophen anthridine oxidase gene and a cytochrome P450 reductase gene through heterologous expression and result comparison andanalysis, and carrying out codon optimization on selected optimal genes; establishing optimal gene sequences on expression carriers, transferring into a yeast engineering bacterium, and carrying outtransformation so as to obtain a recombinant yeast engineering strain; finally feeding the recombinant yeast engineering strain with a macleaya cordata leaf raw material liquid precursor to carry outfermentation, thereby obtaining sanguinarine and chelerythrine. By adopting the method, the enzyme catalysis efficiency of the sanguinarine and the chelerythrine is improved from multiple aspects suchas gene levels and fermentation processes, fumarine and allocryptopine which are high in alkaloid content in leaves can be transformed into sanguinarine and chelerythrine with high values, and comprehensive utilization of macleaya cordata resources can be achieved.
Owner:MICOLTA BIORESOURCE INC LTD

Construction method of escherichia coli bacterial strain for generating lanosterol

The invention relates to a construction method of an escherichia coli bacterial strain for generating lanosterol. The construction method comprises the steps of optimizing a codon of squalene epoxidase of methylococcus capsulatus according to an escherichia coli codon, and performing PCR amplification to obtain a squalene epoxidase genetic fragment; performing PCR amplification to obtain NADPH-cytochrome P450 reductase, and lanosterol synthetase genetic fragments, performing merging to obtain a DNA fragment SE-CPR-LS, cloning the SE-CPR-LS fragment to a vector pet21c by a restriction enzyme cutting connection method, and constructing an expression vector pet21c-SE-CPR-LS; cloning the squalene synthase genetic fragment to the vector pACYCduet-1 by a homologous recombination method, and constructing an expression vector pACYCduet-SS; and transforming the vectors pet21c-SE-CPR-LS and pACYCduet-SS into escherichia coli competence cells, so as to obtain the escherichia coli bacterial strainfor generating lanosterol. Through an exogenous plasmid transforming method, an escherichia coli BL21(DE3) system is improved, so that synthesis of the lanosterol can be realized; and through a codonoptimization technique, the expression level of exogenous genes in an escherichia coli system can be increased.
Owner:XUZHOU NORMAL UNIVERSITY

Recombinant microorganism for preparing dharma diene and protopanoxadiol and construction method thereof

The invention discloses a recombinant microorganism for preparing dharma diene and protopanoxadiol and a construction method of the recombinant microorganism. The construction method of the recombinant bacteria comprises a step of adding dharma diene synthase, protopanoxadiol synthase and nicotinamide adenine dinucleotide phosphate - cytochrome P450 reductase encoding gene into saccharomyces cerevisiae to obtain recombinant bacteria I. According to the recombinant microorganism for preparing the dharma diene and the protopanoxadiol and the construction method of the recombinant microorganism, by means of homologous recombination, the dharma diene synthase, the protopanoxadiol synthase and the nicotinamide adenine dinucleotide phosphate - the cytochrome P450 reductase encoding gene are all added into the saccharomyces cerevisiae to obtain the initial recombinant bacteria, and the effect that the initial recombinant bacteria can produce trace amount of the dharma diene and trace amount of the protopanoxadiol is discovered; tHMG1 activity of the initial recombinant bacteria is further improved, and therefore intermediate recombinant bacteria are obtained, and by means of the intermediate recombinant bacteria, the yield of the dharma diene and the yield of the protopanoxadiol are significantly increased; the activity of one or two or three of ERG1, ERG9 and ERG20 are improved on the basis of the intermediate recombinant bacteria, and the effect that the recombinant bacteria which can be used to increase the yield of the dharma diene and the yield of the protopanoxadiol are constructed is also discovered. By means of the recombinant microorganism for preparing the dharma diene and the protopanoxadiol and the construction method of the recombinant microorganism, the foundation is laid for artificially synthesizing the dammar diene and the protopanoxadiol.
Owner:TIANJIN INST OF IND BIOTECH CHINESE ACADEMY OF SCI +1

High-efficiency enzyme-catalyzed method for synthesizing sanguinarine and chelerythrine

A highly efficient method for catalyzing the synthesis of sanguinarine and chelerythrine, comprising: from the known protopine-6-hydroxylase gene, dihydrobenzophenanthridine oxidase gene and cytochrome P450 reductase gene, by means of heterologous expression and result comparison and analysis, screening out an optimal gene having high expression efficiency, then performing codon optimization on the selected optimal gene; constructing the optimal gene sequence on an expression vector, then transferring same into yeast engineering bacteria for transformation so as to obtain recombinant yeast engineering strains; finally, feeding the recombinant yeast engineering bacteria by using a leaf raw material liquid precursor of Macleaya cordata for fermentation, so as to obtain a product. The invention improves the enzyme catalytic efficiency of sanguinarine and chelerythrine in various aspects such as gene level and fermentation process; the leaf raw material liquid, which is not a traditional medicinal part of Macleaya cordata, is directly used for fermentation with the engineering bacteria, and protopine and allocryptine having high alkaloid content in leaves are converted into high-value sanguinarine and chelerythrine to achieve the comprehensive utilization of Macleaya cordata resources.
Owner:MICOLTA BIORESOURCE INC LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products