Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

90 results about "Dispersion-shifted fiber" patented technology

Dispersion-shifted fiber (DSF) is a type of optical fiber made to optimize both low dispersion and low attenuation. Dispersion Shifted Fiber is a type of single-mode optical fiber with a core-clad index profile tailored to shift the zero-dispersion wavelength from the natural 1300 nm in silica-glass fibers to the minimum-loss window at 1550 nm. The group velocity or intramodal dispersion which dominates in single-mode fibers includes both material and waveguide dispersion. Waveguide dispersion can be made more negative by changing the index profile and thus be used to offset the fixed material dispersion, shifting or flattening the overall intramodal dispersion. This is advantageous because it allows a communication system to possess both low dispersion and low attenuation. However, when used in wavelength division multiplexing systems, dispersion-shifted fibers can suffer from four-wave mixing which causes intermodulation of the independent signals. As a result, nonzero dispersion shifted fiber is often used.

Broadband tunable single-passband microwave photon filter generating system

InactiveCN103955028AHigh out-of-band rejection ratioHigh Q valueCoupling light guidesContinuous lightOptical coupler
The invention discloses a broadband tunable single-passband microwave photon filter generating system. The system comprises a laser, an optical coupler, a polarization modulator, a dispersion displacement optical fiber, a photoelectric detector, a vector network analyzer, a strength modulator and an optical fiber; the laser is used for providing continuous light signals; the optical coupler is used for dividing the continuous light signals into the first path of light signals and the second path of light signals; the polarization modulator is used for modulating the polarization state of the first path of light signals; the dispersion displacement light fiber is used for performing stimulated Brillouin scattering on the detection light signals under the induction effect of pump light signals; the photoelectric detector is used for receiving the detection light signals which are processed in a stimulated Brillouin scattering mode and output by the dispersion displacement optical fiber and generating microwave signals; the vector network analyzer is used for receiving microwave signals output by the photoelectric detector, performing measurement frequency response on the microwave signals, and outputting the microwave signals to the a first polarization modulator at the same time; the strength modulator is used for modulating the polarization state of the first path of light signals and outputting the first path of light signals which are modulated; the optical fiber is used for filtering the first path of light signals which are modulated, and the first path of light signals serve as the pump light signals.
Owner:INST OF SEMICONDUCTORS - CHINESE ACAD OF SCI

SBS broadband tunable optical fiber delay system

ActiveCN104330939ASmall distortionBroaden the SBS gain bandwidthNon-linear opticsFiberGrating
The invention discloses a broadband tunable optical fiber delay system of stimulated brillouin scattering. The SBS broadband tunable optical fiber delay system comprises a main laser, a first optical coupler, a first tunable optical attenuator, a first optical circulator, a slave laser, an optical amplifier, a second tunable optical attenuator, a second optical circulator, a Mach-Zehnder modulator, an optical fiber Bragg grating and a diffusion shifted fiber, wherein the first optical coupler is used for dividing the laser into first bean of laser and a second beam of laser; the first tunable optical attenuator is used for adjusting the laser power of the first beam of laser; the first optical circulator is used for injecting the first beam of laser into the slave laser; the slave laser is excited by the first beam of laser to produce nonlinear spectral light; the optical amplifier is used for amplifying the power of the pump light; the second optical circulator is used for injecting the pumping light into the diffusion shifted fiber; the Mach-Zehnder modulator, is used for modulating a microwave signal for the second beam of laser; the optical fiber Bragg grating is used for carrying out the phase position modulation for optical signal carrier; the diffusion shifted fiber is delayed under the effect of the stimulated brillouin scattering of the pump light in the propagation process of the diffusion shifted fiber.
Owner:INST OF SEMICONDUCTORS - CHINESE ACAD OF SCI

Microwave photon up-conversion device and method based on photoelectric oscillator

The invention discloses a microwave photon up-conversion device and method based on a photoelectric oscillator and belongs to the technical field of microwave photonics. The device is composed of a laser source, a first coupler, a first circulator, a first high nonlinearity dispersion displacement optical fiber, an erbium-doped optical fiber amplifier, a first photoelectric detector, a second coupler, a first Mach-Zehnder modulator, a first microwave signal source, a first direct current voltage-stabilized power supply, an optical filter, a second Mach-Zehnder modulator, a second direct current voltage-stabilized power supply, a second circular, a second high nonlinearity dispersion displacement optical fiber, a second photoelectric detector, a microwave amplifier, a double-parallel Mach-Zehnder modulator, a third direct current voltage-stabilized power supply, a fourth direct current voltage-stabilized power supply, a fifth direct current voltage-stabilized power supply, an optical isolator and a spectrum analyzer. A Brillouin frequency shift value f of the high nonlinearity optical fiber is 9.2GHz, and a signal with frequency of f<m> can be up converted to f<m>+18.4GHz, so alow quality and low frequency intermediate signal is converted into a high quality and high frequency signal.
Owner:JILIN UNIV

Double-pump Fourier domain mode-locked fiber optical parametric oscillator

InactiveCN102749785AAchieve laser outputFlexible tuning range controlNon-linear opticsOptical tomographyGrating
The invention relates to a fiber optical parametric oscillator for achieving Fourier domain mode-locked laser output. Seed light output by two semiconductor lasers is modulated by phase and amplified by a high power optical amplifier to serve as pump light, the pump light is output from the pump output end of a wavelength division multiplexer and enters high nonlinear fiber through a polarization controller, and a part of the pump light is transferred into signal light in the high nonlinear fiber due to fiber nonlinear effect. After the signal light passes through a second optical isolator, dispersion-shifted fiber and a tunable filter, most energy is fed back to the high nonlinear fiber from a high power shunt ratio output end of an optical coupler with 9:1 power shunt ratio through the wavelength division multiplexer so as to form resonance laser output. When modulation frequency of the tunable filter is equal to fundamental frequency of a laser resonant cavity, the Fourier domain mode-locked laser output can be obtained. The fiber optical parametric oscillator achieves the Fourier domain mode-locked laser output, has significant application value in the fields of optical tomography, fiber bragg grating sensing and the like, and has the advantages of being high in wavelength scanning frequency, flexible in laser output spectrum tuning range control and the like.
Owner:ZHEJIANG NORMAL UNIVERSITY

Fiber-optic compensation for dispersion, gain tilt, and band pump nonlinearity

An apparatus and method are described for combining optical amplification and dispersion compensation in a Raman amplifier. A Dispersion-Managing Raman Amplifier (DMRA) combines Raman amplification with dispersion compensation by selecting the length and dispersion of the gain fiber to balance the dispersion of the link. This gain fiber is also single-mode at the signal and pump wavelengths. The pumping level is adjusted to balance the losses from the gain fiber and transmission link, while the pumping configuration is selected to remain within the 3 dB loss length for the pumping light. When the amplifier is split into two segments, the two segments may be joined by an isolator, a gain equalization element, and/or an optical add/drop multiplexer. For WDM transmission systems based on dispersion-shifted fiber (DSF), operation in the “violet band” between 1430–1530 nm is based on Raman amplification. By using a DMRA, a dispersion and nonlinearity managed system can be implemented. In particular, 4WM does not phase match in such a system, and modulation instability is absent in the transmission link. Furthermore, gain equalization can be added to the DMRA by cascading one or two Mach-Zehnder frequency filters. The invention also includes a method for symmetrically adding channels below and above the C-band, the gain tilt within the C-band can be minimized. Therefore, a roughly equal number of channels should be placed in the short-wavelength S-band and the long-wavelength L-band to minimize the Raman energy exchange in the C-band. Also, whereas C- and L-bands can be amplified using erbium-doped fiber amplifiers, the S-band can use either discrete or distributed Raman amplifiers. To minimize the interaction between pumps for different bands, alternate band pumps can be spatially dispersed and/or cross-polarized. The distributed Raman amplification can be achieved by pumping the transmission line with discrete laser diodes or by a Raman oscillator.
Owner:NEPTUNE SUBSEA IP LTD +1

Method and device for obtaining flattop Brillouin gain spectra based on pumping modulation in liquid core optical fibers

A method and a device for obtaining flattop Brillouin gain spectra based on pumping modulation in liquid core optical fibers solve the problem in the existing method and device that flattop gain spectra cannot be obtained when adopted dispersion displacement optical fibers or standard single mode optical fibers are over long and equal amplitude pumping wires are fewer and intrinsic Brillouin gain spectra cannot be changed. The method comprises modulating lasers output by a laser to obtain multiple spectral line pumping light, inputting the multiple spectral line pumping light in the liquid core optical fibers, and obtaining the flattop Brillouin gain spectra, namely spectra of backward Brillouin scattering light in the liquid core optical fibers. The device is composed of the laser, a polarization controller, a strength modulator, a signal generator, a direct current DC stabilized power supply, an optical fiber circulator, an optical fiber coupler and the liquid core optical fibers, and another device is composed of a signal generator, an optical fiber circulator, an optical fiber coupler, the liquid core optical fibers and a phase modulator. The method and the device are applicable to obtaining of the flattop Brillouin gain spectra.
Owner:HARBIN UNIV OF SCI & TECH

Device and method for simultaneously measuring frequencies of multiple microwave signals

The invention discloses a device and a method for simultaneously measuring the frequencies of multiple microwave signals. An upper side-band optical signal including the frequency of a to-be-measuredmicrowave signal is obtained through a modulator and a filter and sent to dispersion shifted fibers. When the frequency difference of laser signals input to the two ends of any dispersion shifted fiber is Brillouin frequency shift, part of energy of a laser signal output by a corresponding single-frequency laser is transferred to the upper side-band optical signal. A data processor measures the output current of a low-frequency photoelectric detector under the condition that the to-be-measured microwave signal is not added and the output current of the low-frequency photoelectric detector under the condition that the to-be-measured microwave signal is added, and compares the currents. If the output current of the low-frequency photoelectric detector under the condition that the to-be-measured microwave signal is added is larger, the to-be-measured microwave signal contains a microwave signal of a corresponding frequency. If the output current of the low-frequency photoelectric detectorunder the condition that the to-be-measured microwave signal is added is unchanged or smaller, the to-be-measured microwave signal does not contain a microwave signal of a corresponding frequency. Multiple microwave frequencies can be instantaneously measured. Moreover, the measurement frequency range is wide, and the measurement resolution is as high as 0.1GHz.
Owner:MINNAN NORMAL UNIV

Micro-cantilever beam fiber grating micro-displacement sensor based on quantum enhancement

PendingCN110260800AAchieve ultra-high sensitivity measurementAvoid stressUsing optical meansConverting sensor output opticallyGratingSpectrum analyzer
The invention discloses a micro-cantilever beam fiber grating micro-displacement sensor based on quantum enhancement. The micro-cantilever beam fiber grating micro-displacement sensor comprises a laser, a 2*1 coupler, a filter, an erbium-doped fiber amplifier, a filter, a fiber polarization controller, a fiber polarization beam splitter, a dispersion displacement fiber, a coarse wavelength division multiplexer, a fiber isolator, a fiber Bragg grating, a micro-cantilever beam, a balance detector and a spectrum analyzer. According to the invention, quantum entangled double light beams generated after four-wave frequency mixing are used, the quantum entangled double light beams have high quantum correlation, the intensity difference quantum noise of each mode is reduced, the detection light and the reference light quantum correlation noise are subtracted to generate a noise substrate lower than the shot noise limit, so that signals annihilated under the quantum noise can be detected, and thus, ultra-high sensitivity measurement of micro-displacement breaking through the quantum noise limit is achieved. The micro-cantilever beam fiber grating micro-displacement sensor has the advantages of high sensitivity, safety, reliability and the high practical value.
Owner:CHINA JILIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products