Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

30 results about "Magnetic field imaging" patented technology

Magnetic Field Imaging (MFI) is a non-invasive and side-effect-free cardiac diagnostic method. In more recent technology, magnetocardiography (MCG) has become the clinically predominant application for recording the heart's magnetic signals. that detects and records the electromagnetic signals that are associated with the heartbeat using a multi-channel magnetic sensor array. The electric signals are known from the ECG. In the 1990s and beyond, more recent technology has supplanted the MFI, particularly MCG (xref. Cardiomag Imaging, Inc.). Through clinical research in Europe, Asia, and the U.S. (see publications in footnotes), MCG has been proven to have practical application for diagnosis of cardiac disease, and has become the clinically predominant application for recording the heart's magnetic signals. In comparison to MCG, MFI, among others, records the whole relevant area above the chest of the person.

Methods & apparatus for magnetic resonance imaging

A parallel magnetic resonance imaging (MRI) apparatus configurable to image a physical entity comprises:a main magnetic flux source for providing a uniform fixed magnetic field, B0;an RF array system comprising a plurality of RF coils and receivers, said RF system configured for:generating rotating RF excitation magnetic fields B1; andreceiving RF signals due to precessing nuclear magnetization on multiple spatially distinct radio frequency coils and associated receiver channels, said RF system being configured to operate in accordance with a B1 sensitivity encoding technique;a control processor for controlling imaging functionality, collecting image data and effecting data processing of the captured image data the control processor being configured with post processing capability for the B1 sensitivity encoding technique;an image display means for displaying processed image data as resultant images; andan auxiliary magnetic field means capable of producing at least one auxiliary uniform B0 step magnetic field imaging region within the main B0 magnetic field;wherein:the auxiliary magnetic field, means is configured to operate in combination with the RF coil system and the B1 sensitivity encoding technique, the imaging apparatus thereby providing faster image acquisition than that attributed to the speed up factor provided solely by the B1 sensitivity encoding technique.The invention also includes a method of imaging using this apparatus.Furthermore, the invention also includes a method and apparatus for three-dimensional MR imaging using a 1D Multiple Acquisition Micro B0 array coupled with a 2D Multiple Acquisition Micro B0 array.
Owner:UNIV OF SHEFFIELD AT WESTERN BANK THE

Methods & apparatus for magnetic resonance imaging

A parallel magnetic resonance imaging (MRI) apparatus configurable to image a physical entity comprises: a main magnetic flux source for providing a uniform fixed magnetic field, Balpha; an RF array system comprising a plurality of RF coils and receivers, said RF system configured for: generating rotating RF excitation magnetic fields B1; and receiving RF signals due to precessing nuclear magnetization on multiple spatially distinct radio frequency coils and associated receiver channels, said RF system being configured to operate in accordance with a B1 sensitivity encoding technique; a control processor for controlling imaging functionality, collecting image data and effecting data processing of the captured image data the control processor being configured with post processing capability for the B1 sensitivity encoding technique; an image display means for displaying processed image data as resultant images; and an auxiliary magnetic field means capable of producing at least one auxiliary uniform Bo step magnetic field imaging region within the main B0 magnetic field; wherein: the auxiliary magnetic field, means is configured to operate in combination with the RF coil system and the B1 sensitivity encoding technique, the imaging apparatus thereby providing faster image acquisition than that attributed to the speed up factor provided solely by the B1 sensitivity encoding technique. The invention also includes a method of imaging using this apparatus. Furthermore, the invention also includes a method and apparatus for three-dimensional MR imaging using a 1D Multiple Acquisition Micro Bo array coupled with a 2D Multiple Acquisition Micro Bo array.
Owner:UNIV OF SHEFFIELD AT WESTERN BANK THE

Multi-dimensional nuclear magnetic resonance fringe magnetic field imaging experimental device

ActiveCN105259199ATo overcome the shortcomings of relatively single means of useAvoid poor rotational stabilityMeasurements using NMR imaging systemsAnalysis using nuclear magnetic resonanceRelative motionSample image
Relating to nuclear magnetic resonance imaging, the invention provides a multi-dimensional nuclear magnetic resonance fringe magnetic field imaging experimental device. The experimental device is equipped with a host computer, a PMAC controller, a spectrometer, an AC servo motor driver, four DC servo motor drivers, an AC servo motor, four DC servo motors, a fringe magnetic field imaging plane lifting platform, an imaging probe, two sample chamber Y axis motion system power transmission lines, five sample chamber rotation motion system power transmission lines, seven sample chamber up-and-down motion system power transmission lines, four sample chamber X axis motion system power transmission lines, a probe coil, and a sample chamber up-and-down motion system worm. The experimental device can realize arbitrary angle adjustment of the sample chamber, stable mechanical discontinuous rotation and relative motion of the sample chamber and the probe coil. Through combination of positioning algorithm and a precise mechanical structure, the experimental device realizes movement of the sample chamber relative to the coil, and solves the problem that existing multi-dimensional fringe magnetic field imaging probe experimental devices in the world cannot realize large size sample imaging under an ultrastrong gradient field.
Owner:XIAMEN UNIV

Lithium battery pack consistency detection method and device based on in-situ magnetic field imaging

The invention discloses a lithium battery pack consistency detection method and device based on in-situ magnetic field imaging. The method comprises the following steps: measuring external magnetic field distribution of a lithium battery pack at equal discharge capacity intervals in a constant-current discharge process of the lithium battery pack to be measured; calculating the relative change of the external magnetic field distribution of the lithium battery pack in the equal capacity interval; adopting a statistical analysis method to extract statistical feature vectors relative to magnetic field changes; and analyzing the statistical feature vectors by adopting a statistical learning method, and detecting and evaluating the consistency of the battery pack and positioning the batteries with abnormal performance according to an analysis result. The device comprises a motion scanning device, a magnetic field acquisition device, a control device, a battery test device and a sample device. The method has the advantages of no damage, no contact, high efficiency and the like, solves the problem that an existing lithium battery pack consistency detection method cannot monitor all single batteries in the battery pack in a service state on line, and provides technical support for scenes of life prediction, maintenance, safety evaluation and the like of the lithium battery pack.
Owner:UNIV OF SCI & TECH OF CHINA

NMR fringe magnetic field imaging experimental device

The utility model relates to an experimental device for nuclear magnetic resonance edge magnetic field imaging, which relates to nuclear magnetic resonance imaging. Equipped with servo motor, voice coil motor, coarse adjustment non-magnetic lifting platform, fine adjustment non-magnetic lifting platform, nuclear magnetic resonance edge magnetic field imaging probe, sample chamber, probe coil and sample relative movement / stationary conversion pin, coarse adjustment and fine adjustment non-magnetic Lifting table grating ruler and control system; the control system is equipped with a host computer, PMAC controller, servo motor driver and voice coil motor controller. Combining the two-stage lifting high-precision mechanical structure of coarse adjustment and fine adjustment with advanced closed-loop control algorithm, it can realize the high-precision movement of the sample with the highest precision of 1 μm, and complete the high-precision and high-resolution nuclear magnetic resonance edge magnetic field imaging. Two experimental methods, namely, the relative moving imaging between the probe coil and the sample and the relatively static imaging between the probe coil and the sample, can be realized without any secondary modification on an experimental device, which ensures that the strong magnetic environment is not affected to the greatest extent; the closed-loop control makes the sample The more precise the displacement, the more accurate the result.
Owner:XIAMEN UNIV

Gravity magnetic field imaging method and system

The invention provides a gravity magnetic field imaging method and system. The method comprises the following steps: calculating all orders of vertical guide numbers {Tn} of gravitational magnetic field data by utilizing an integrated quadratic vertical guide number method; substituting the actually measured first-order vertical derivative into the method for integrating the second-order vertical derivative, and degrading the method for integrating the second-order vertical derivative into a method which only needs to calculate in a spatial domain without solving a heavy magnetic field integral in a wavenumber domain; calculating a coefficient equation of Pade approximate expansion downward continuation by utilizing the obtained vertical guide number {Tn} of each order, and solving coefficients in the coefficient equation; substituting the obtained coefficient into Pade approximate expansion, and calculating a downward continuation result of the gravity magnetic field data; and performing median filtering on the obtained downward continuation result, and directly imaging the filtered result to obtain an equivalent gravity magnetic field imaging result. The gravity magnetic field imaging method and system provided by the invention can be used for improving the accuracy and reducing the dependence on depth weighting on the premise of ensuring the stability.
Owner:CHINESE ACAD OF GEOLOGICAL SCI

A lithium battery pack consistency detection method and device based on in-situ magnetic field imaging

The invention discloses a lithium battery pack consistency detection method and device based on in-situ magnetic field imaging. The method includes: during the constant current discharge process of the lithium battery pack to be tested, measuring the external magnetic field distribution of the lithium battery pack at equal discharge capacity intervals; calculating the relative change of the external magnetic field distribution of the lithium battery pack within the equal capacity interval; using a statistical analysis method to extract Statistical eigenvectors of relative magnetic field changes; Statistical learning methods are used to analyze the aforementioned statistical eigenvectors, and based on the analysis results, battery pack consistency detection and evaluation and abnormal performance battery location are realized. The device includes motion scanning equipment, magnetic field acquisition equipment, control equipment, battery testing equipment and sample equipment. The method has the advantages of non-destructive, non-contact, high efficiency, etc., and solves the problem of online monitoring of all single cells in the battery pack under the service state of the existing lithium battery pack consistency detection method. Security assessment and other scenarios provide technical support.
Owner:UNIV OF SCI & TECH OF CHINA

Experimental device for multi-dimensional NMR fringe magnetic field imaging

ActiveCN105259199BTo overcome the shortcomings of relatively single means of useAvoid poor rotational stabilityMeasurements using NMR imaging systemsAnalysis using nuclear magnetic resonanceNMR - Nuclear magnetic resonanceMotor drive
The invention relates to a multi-dimensional nuclear magnetic resonance edge magnetic field imaging experimental device, which relates to nuclear magnetic resonance imaging. Equipped with upper computer, PMAC controller, spectrometer, AC servo motor driver, four DC servo motor drivers, AC servo motor, four DC servo motors, edge magnetic field imaging plane lifting platform, imaging probe, two sample chambers Y-axis movement System power transmission lines, five sample chamber rotary motion system power transmission lines, seven sample chamber up and down motion system power transmission lines, four sample chamber X-axis motion system power transmission lines, probe coils, sample chamber up and down motion system worm. It can realize arbitrary angle adjustment of the sample cavity, stable mechanical discontinuous rotation and relative movement between the sample cavity and the probe coil. Through the combination of positioning algorithm and precision mechanical structure, the movement of the sample cavity relative to the coil is realized, which solves the problem that the current international multi-dimensional edge magnetic field imaging probe experimental device cannot realize the imaging of large-scale samples under a super-strong gradient field.
Owner:XIAMEN UNIV

Nuclear magnetic resonance fringe magnetic field imaging experimental device

A nuclear magnetic resonance (NMR) fringe magnetic field imaging experimental device relates to NMR imaging. The device comprises a servo motor, a voice coil motor, a coarse adjustment non-magnetic lifting platform, a fine adjustment non-magnetic lifting platform, a NMR fringe magnetic field imaging probe, a sample chamber, a probe coil and sample relative-mobile/static conversion pin, a coarse adjustment and fine adjustment non-magnetic lifting platform grating ruler, and a control system. The control system is composed of a principal computer, a PMAC controller, a servo motor driver, and a voice coil motor controller. A coarse adjustment and fine adjustment two-stage lifting high-precision mechanical structure and an advanced closed-loop control algorithm are combined to realize high-precision sample movement with the highest precision of 1micron and complete high-precision and high-resolution NMR fringe magnetic field imaging. Two experimental methods, namely, probe coil and sample relative-mobile imaging and probe coil and sample relative-static imaging, can be completed on one experimental device without the need for any secondary transformation, and that a strong magnetic environment is not affected is guaranteed to the maximum. Closed-loop control makes sample displacement more precise and the result more accurate.
Owner:XIAMEN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products