Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

272 results about "Non linear response" patented technology

Reactive sensor modules using pade' approximant based compensation and providing module-sourced excitation

Reactive sensors typically exhibit nonlinear response to the combination of an excitational signal (e.g., sinusoidally oscillating signal) and a physical parameter under measure (e.g., position of magnetic core member). Such sensors are typically sensitive to temperature variation. Systems and methods are disclosed for compensating for the nonlinear and / or temperature dependant behavior of reactive sensors and for calibrating the post-compensation output signals relative to known samples of the physical parameter under measure (e.g., position). One class of embodiments comprises a housing containing at least part of a reactive sensor, a monolithic integrated circuit and a timing reference (e.g., an oscillator crystal). The integrated circuit includes a waveform generator for generating a sensor exciting signal, a detector for detecting the response of the sensor to the combination of the exciting signal and the under-measure physical parameter, a temperature compensating unit and a Pade' Approximant based, nonlinearity compensating unit. The temperature compensating unit and the Pade' Approximant nonlinearity compensating unit are tuned by use of digitally programmed coefficients. The coefficients calibrate the final output as well as compensating for nonlinearity and temperature sensitivity. A highly accurate measurement of the under-measure physical parameter is made possible even though each of the sensor and compensating circuitry may be relatively simple, compact, and low in cost.
Owner:SEMICON COMPONENTS IND LLC +1

Sampled amplitude read channel employing an adaptive non-linear correction circuit for correcting non-linear distortions in a read signal

A sampled amplitude read channel is disclosed for magnetic disk storage systems comprising an adaptive non-linear correction circuit for correcting non-linear distortions in the read signal, such as asymmetry caused by the non-linear response of a magneto-resistive (MR) read head. The analog read signal is sampled and the discrete time sample values equalized into a desired partial response prior to sequence detection. The non-linear correction circuit is inserted into the read path prior to the sequence detector and adaptively tuned by a least-mean-square (LMS) adaptation circuit. In one embodiment, the non-linear correction circuit is a discrete-time Volterra filter comprising a linear response for implementing an equalizing filter, and a non-linear response for attenuating non-linear distortions in the read signal. The filter coefficients of both the linear and non-linear sections of the Volterra filter are adaptively adjusted by the LMS adaptation circuit. In an alternative embodiment, the non-linear correction circuit operates in the analog domain, prior to the sampling device, where the cost and complexity can be minimized. The analog correction circuit implements an inverse response to that of the non-linearity in the read signal, and the response is adaptively tuned using an LMS update value computed in discrete-time for a Volterra filter, without actually implementing a Volterra filter. Further, the LMS update value for the analog correction circuit can be implemented using a simple squaring circuit.
Owner:CIRRUS LOGIC INC

Augmented classical least squares multivariate spectral analysis

InactiveUS6842702B2Accurate and precise prediction modelAccurate and precise predictionInvestigating moving fluids/granular solidsScattering properties measurementsAlternating least squaresSpectral analysis
A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.
Owner:NAT TECH & ENG SOLUTIONS OF SANDIA LLC

ADC

This invention relates to Analog to Digital Converters (ADC) and, inter alia, to Time Interleaved ADCs and Successive Approximation Register (SAR) ADC's. In a conventional Time Interleaved ADC employing SAR ADC units, the input signal is processed through a track-and-hold circuit (T/H), and then through a buffer circuit, before the SAR ADC unit. There, by means of a comparator, the signal is compared with a Digital-to-Analog Converter (DAC) signal from the SAR logic. The buffer reduces the influence of capacitive loading and physical layout design on the SAR ADC input, but typically has a non-linear response and thus introduces distortion to the input signal. This can limit the ADC linearity, particularly for high-speed ADCs operating with low-supply voltages. An objective of the invention is to reduce or eliminate the effect of the buffer non-linearity. This is done in some embodiments by routing both the signals to the comparator through the same buffer circuit. In another embodiment the DAC signal is routed through a separate second buffer circuit. By use of a single buffer circuit, or where there is ideal matching of the buffer circuits in the latter embodiment, the distortion effects are completely eliminated; however, for practical imperfectly matched buffer circuits according to the latter embodiment, the gain and off-set mismatches can be accommodated through calibration of the buffers or, in suitable applications, through the DAC calibration.
Owner:NXP BV

Frequency modulated continuous wave laser radar frequency modulation nonlinear response coefficient measuring method and device

The invention provides a frequency modulated continuous wave laser radar frequency modulation nonlinear response coefficient measuring method. According to the method, a signal generator generates sawtooth wave frequency-modulated signals, inputs the sawtooth wave frequency-modulated signals into a driving circuit and drives a laser to work, modulation signal light output by the laser is divided into two paths through a first coupler, one path of light is emitted to a measured object through a circulator, return light returned by the measured object is received by the circulator, the return light and the other path of light are coupled through a second coupler, light output by the second coupler is received by a photoelectric detector, obtained beat frequency signals are processed through a signal processing circuit, difference frequency is obtained through processing of computer software and a nonlinear frequency modulation coefficient is worked out. The frequency modulated continuous wave laser radar frequency modulation nonlinear response coefficient measuring method can be used for accurately measuring the nonlinear coefficient, provides key parameters for frequency modulation nonlinear rectification for a system, and has great significance for improving the frequency modulation linearity of frequency modulated continuous wave laser radar range radar, and the accuracy of measurement of the speed and distance of the system .
Owner:HUAQIAO UNIVERSITY

Self-adaptation optical system near-field wave-front sensor calibration device and calibration method based on phase-diversity method

InactiveCN102889935ARealize full optical path aberration correctionImproved wavefront controlOptical measurementsTesting optical propertiesWavefront sensorPupil
The invention discloses a self-adaptation optical system near-field wave-front sensor calibration device and a calibration method based on a phase-diversity method. The self-adaptation optical system near-field wave-front sensor calibration device consists of a wave-front corrector, a spectroscope, a near-field wave-front sensor, a wave-front controller, an imaging system and a phase-diversity wave-front sensor. According to the method, the phase-diversity wave-front sensor is used for measuring the static aberration of the whole system, and the wave-front controller is used for controlling the wave-front corrector to correct the static aberration; and after the static aberration is corrected, the zero point at the reference position of the near-field wave-front sensor at the pupil plane position is calibrated or the zero point of the absolute aberration is set, and the two zero points are used as the wave-front control objective of the self-adaptation optical system to effectively correct the static aberration of the whole optical path. According to the self-adaptation optical system near-field wave-front sensor calibration device and the calibration method, the static aberration of the whole optical path can be effectively corrected, the wave-front control error caused by the non-linear response of the corrector can be avoided, and the correction capability of the self-adaptation optical system can be improved obviously without obviously increasing the system complexity and the additional aberration.
Owner:INST OF OPTICS & ELECTRONICS - CHINESE ACAD OF SCI

Method and device for achieving all-optical nonlinear activation function of optical neural network

The invention discloses a method and a device for achieving an all-optical nonlinear activation function of an optical neural network. The method comprises the following steps: acquiring a to-be-processed signal optical signal and a reference optical signal coherent with the to-be-processed signal optical signal; inputting the to-be-processed signal optical signal and the reference optical signalinto a first phase shift module, wherein the first phase shift module performs phase shift operation on the to-be-processed signal optical signal and the reference optical signal to obtain an opticalsignal of a first array; and inputting the optical signal of the first array into an optical interference module, performing nonlinear operation on the optical signal of the first array in the opticalinterference module to obtain an optical signal of a second array, and outputting the optical signal of the second array as a nonlinear response of the signal optical signal to be processed. According to the technical scheme, the problem that an existing optical nonlinear function calculation unit has high requirements for optical power and a transimpedance amplifier is solved, parameters are adjustable, and a provided nonlinear function is flexible and controllable.
Owner:UNITED MICROELECTRONICS CENT CO LTD

Relative radiometric correction method for star-load TDICCD camera

ActiveCN101226639ASolve the problem of different nonlinearity of light intensity responseSolve for uniformityImage analysisWave based measurement systemsCalibration coefficientLinear fitting
Disclosed is a relative radiometric correction method for the satellite-borne TDICCD camera. The steps comprises (1) analyzing the response output of a tapping under different light intensities and acquiring a scatter diagram of tapping light intensity response, (2) carrying out linear fitting to the scatter diagram of tapping light intensity response, then carrying out linear interpolation to the scatter diagram to obtain an interpolation curve, subtracting the interpolation curve of each tapping from respective fitting line to obtain a non-linear modified function of the tapping to light intensity, (3) using the non-linear modified function to carry out non-linear modification one after another to tapping of radiometric calibration data, and obtaining modified radiometric calibration data, (4) processing the modified radiometric calibration data and obtaining a modified inter- calibration coefficient, (5) carrying out radiation homogeneousness correction to arbitrary image produced by TDICCD via using the non-linear modified function and the modified inter- calibration coefficient. The invention resolves the problem that non-linear response to light intensity of the tapping can not be corrected in existing radiometric calibration method, and can increase relative radiometric calibration accuracy.
Owner:AEROSPACE DONGFANGHONG SATELLITE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products