Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1170 results about "Optical networking" patented technology

Optical networking is a means of communication that uses signals encoded onto light to transmit information among various nodes of a telecommunications network. They operate from the limited range of a local-area network (LAN) or over a wide-area network (WAN), which can cross metropolitan and regional areas all the way to national, international and transoceanic distances. It is a form of optical communication that relies on optical amplifiers, lasers or LEDs and wave division multiplexing (WDM) to transmit large quantities of data, generally across fiber-optic cables. Because it is capable of achieving extremely high bandwidth, it is an enabling technology for the Internet, the telephone, and the communication networks that transmit the vast majority of all human and machine-to-machine information.

Passive optical network system and downlink transmission method thereof

The embodiment of the invention discloses a passive optical network system and a downlink transmission method thereof. The passive optical network system comprises an optical line terminal, an optical distribution network and a plurality of optical network units. The optical line terminal is used to send a downlink multi-wavelength optical signal composed of a plurality of downlink optical signal wavelength division multiplexing having different wavelengths, and the optical distribution network comprises a first-stage optical splitter, a plurality of second-stage optical splitters and a plurality of filter modules. The first-stage optical splitter is used to divide a downlink multi-wavelength signal sent by the optical line terminal into a plurality of downlink multi-wavelength signals, the plurality of filter modules are used to carry out filter processing on the plurality of downlink multi-wavelength signals to obtain a downlink single wavelength optical signal of which the wavelength corresponds to a channel central wavelength; wherein, the channel central wavelengths of the plurality of filter modules respectively correspond to the plurality of downlink optical signals having different wavelengths, the second-stage optical splitters are used to carry out spectral processing on the downlink single wavelength signal and then provide the downlink single wavelength signal to the optical network unit.
Owner:李亚泽

All-optical regenerator and optical network incorporating same

ActiveUS20080085125A1Increase in sophistication and complexityImprove distortionElectromagnetic transmissionAudio power amplifierSignal quality
The present invention provides an optical networking device for re-amplifying, re-shaping, and re-timing an optical signal, as well as providing distortion compensation and performance monitoring of the optical signal. The optical networking device includes an all-optical regenerator device for one or more of re-amplifying, re-shaping, and re-timing the optical signal; a distortion compensator device for compensating for distortion associated with the optical signal; and a quality-of-signal monitoring device for measuring the quality of the optical signal. Preferably, the all-optical regenerator device, the distortion compensator device, and the quality-of-signal monitoring device are disposed within a single module. The quality-of-signal monitoring device measures the optical signal subsequent to distortion compensation. Alternatively, the quality-of-signal monitoring device measures the optical signal subsequent to distortion compensation and all-optical regeneration. In various embodiments, the quality-of-signal monitoring device provides feedback to the distortion compensator device, a distortion compensator device disposed along a line system, one or more of an optical amplifier and a distortion compensator device disposed along the line system, and a transmitter device disposed along the line system.
Owner:CIENA

Method and device for detecting optical power of passive optical network (PON) and PON system

The embodiment of the invention discloses a device for detecting optical power of a passive optical network (PON). The device comprises a receiving module, a detection module and a controller, wherein the receiving module is used for receiving optical signals sent by an optical network unit (ONU); the detection module comprises a current mirror received signal strength indication (RSSI) detection branch and a logarithmic amplifier RSSI detection branch; the current mirror RSSI detection branch and the logarithmic amplifier RSSI detection branch are respectively coupled with the receiving module and used for carrying out RSSI measurement on the optical signals received by the receiving module in accordance with received RSSI function trigger signals; and the controller is coupled with the detection module and used for outputting the RSSI function trigger signals to the detection module, selectively receiving RSSI measurement results which are output by the RSSI detection branch and correspond to the luminous intensity of the optical signals sent by the ONU according to the selection control signals provided by a selection control signal generating module, and calculating the optical power information of the optical signals in accordance with the RSSI measurement results. The embodiment of the invention also discloses a method for detecting optical power of a PON and a PON system.
Owner:HUAWEI TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products