Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

65results about "Logic circuits using dielectric elements" patented technology

Level shift circuit

Provided is a high-reliability level shift circuit not prone to faulty operation due to noise. A level shift circuit 1 is provided with: first and second current control elements 12a and 12b into control terminals of which a reverse-phase input signal and an in-phase input signal are input, respectively; first and second load circuits 13a and 13b which are connected at one end to a high-side power source terminal Vb and at the other end to each of first terminals of the first and second current control elements 12a and 12b; a comparator 14 in which a pair of differential input terminals Np and Nn are connected separately to each of the first terminals of the first and second current control elements 12a and 12b; a current generating circuit 3 in which first and second current output terminals Na and Nb are connected to second terminals of the first and second current control elements 12a and 12b, and which separately generates a current which flows through the respective first and second current control elements 12a and 12b; and voltage suppressing circuits 15a and 15b which are connected separately or commonly to the first and second current output terminals Na and Nb, respectively, and suppress voltage from rising in the first and second current output terminals Na and Nb, respectively.
Owner:SHARP KK

Output Signal Generation Circuitry for Converting an Input Signal From a Source Voltage Domain Into an Output Signal for a Destination Voltage Domain

Output signal generation circuitry 100 may be used for converting an input signal 110 from a source voltage domain to an output signal for a destination voltage domain, the destination voltage domain operating from a supply voltage that exceeds a stressing threshold of components within the output signal generation circuitry. The output signal generation circuitry may comprise level shifting circuitry 160 operating from the supply voltage, which is configured to generate at an output node 130 the output signal for the destination voltage domain in dependence on the input signal. The output signal generation circuitry may also comprise tracking circuitry 280A, 280B, 280C, 280D associated with at least one component of the level shifting circuitry to ensure that a voltage drop across the at least one component does not exceed the stressing threshold, wherein the tracking circuitry additionally introduces a delay in a change in the output signal in response to a change in the input signal. Timing compensation circuitry 180A, 180B may also be provided, to control the voltage on the output node in a manner to compensate for the delay introduced by the tracking circuitry.
Owner:ARM LTD

Receiver Circuitry and Method for Converting an Input Signal From a Source Voltage Domain Into an Output Signal for a Destination Voltage Domain

The present invention provides a receiver circuit and method for receiving an input signal from a source voltage domain and converting the input signal into an output signal for a destination voltage domain. The source voltage domain operates from a supply voltage that exceeds a stressing threshold of components within the receiver circuitry, and the receiver circuitry is configured to operate from the supply voltage of the source voltage domain. The receiver circuitry comprises first internal signal generation circuitry configured to convert the input signal into a first internal signal in a first voltage range, and second internal signal generation circuitry configured to convert the input signal into a second internal signal in a second voltage range. Signal evaluation circuitry establishes a logic high voltage threshold and a logic low voltage threshold dependent on the supply voltage, and employs the first and second internal signals in order to detect based on the logic high voltage threshold and logic low voltage threshold when the input signal transitions between a logic low level and a logic high level (in either direction). Output generation circuitry then generates the output signal in dependence on the detection performed by the signal evaluation circuitry. The first voltage range and the second voltage range are such that the first internal signal and second internal signal will not exceed the stressing threshold of components in the signal evaluation circuitry. The receiver circuitry is able to reliably detect transitions in the input signal in situations where the supply voltage of the source voltage domain exceeds the stressing threshold of the receiver's components, but without overstress of the receiver's components.
Owner:ARM LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products