Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

103 results about "Acyl-CoA" patented technology

Acyl-CoA is a group of coenzymes that metabolize fatty acids. Acyl-CoA's are susceptible beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP, the universal biochemical energy carrier.

Polyunsaturated fatty acid production in heterologous organisms using PUFA polyketide synthase systems

Disclosed are novel acyl-CoA synthetases and novel acyltransferases, nucleic acid molecules encoding the same, recombinant nucleic acid molecules and recombinant host cells comprising such nucleic acid molecules, genetically modified organisms (microorganisms and plants) comprising the same, and methods of making and using the same. Also disclosed are genetically modified organisms (e.g., plants, microorganisms) that have been genetically modified to express a PKS-like system for the production of PUFAs (a PUFA PKS system or PUFA synthase), wherein the organisms have been modified to express an acyl-CoA synthetase, to express an acyl transferase, to delete or inactivate a fatty acid synthase (FAS) expressed by the organism, to reduce competition for malonyl CoA with the PUFA synthase or to increase the level of malonyl CoA in the plant or plant cell, and in one aspect, to inhibit KASII or KASIII. Additional modifications, and methods to make and use such organisms, in addition to PUFAs and oils obtained from such organisms, are disclosed, alone with various products including such PUFAs and oils.
Owner:SEMBIOSYS GENETICS INC +1

Methods and compositions for modification of lipid biosynthesis

The invention provides polypeptides having wax ester synthase and acyl-CoA:diacylglycerol acyltransferase activity. Also provided are the nucleic acids encoding such polypeptides, cells and organisms transformed therewith and methods of use thereof. The invention allows the modification of lipid profiles in host cells and organisms. Novel methods for the production of waxy esters are also provided by the invention.
Owner:MONSANTO TECH LLC

Plant Genes Associated With Seed Oil Content And Methods Of Their Use

Cytochrome b5 (Cb5) is a haem-binding protein located in the endoplasmic reticulum (ER) and the outer mitochondrial membranes of higher eukaryotes. In higher plants, animals, and fungi, the ER resident Cb5 has been shown to play a role in desaturation of acyl CoA fatty acids. Higher plants Cb5 isoforms from plants such as soybean or Arabidopsis are capable of modulating omega-3 desaturation. Co-expression of certain Cb5 isoforms with FAD3 in a host plant results in increased production of seed oil content as well as altered ratio between different fatty acids. It is also disclosed here that overexpression of Yarrowia ACL enzymes in the plastids of a host plant helps boost the synthesis of acetyl CoA, which in turn, may lead to increased synthesis of fatty acids and enhanced oil accumulation in the seeds.
Owner:UNIVERSITY OF MISSOURI

Polyhydroxyalkanoate production from polyols

Organisms are provided which express enzymes such as glycerol dehydratase, diol dehydratase, acyl-CoA transferase, acyl-CoA synthetase β-ketothiolase, acetoacetyl-CoA reductase, PHA synthase, glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase, which are useful for the production of PHAs. In some cases one or more of these genes are native to the host organism and the remainder are provided from transgenes. These organisms produce poly (3-hydroxyalkanoate) homopolymers or co-polymers incorporating 3-hydroxypropionate or 3-hydroxyvalerate monomers wherein the 3-hydroxypropionate and 3-hydroxyvalreate units are derived from the enzyme catalysed conversion of diols. Suitable diols that can be used include 1,2-propanediol, 1,3 propanediol and glycerol. Biochemical pathways for obtaining the glycerol from normal cellular metabolites are also described. The PHA polymers are readily recovered and industrially useful as polymers or as starting materials for a range of chemical intermediates including 1,3-propanediol, 3-hydroxypropionaldehyde, acrylics, malonic acid, esters and amines.
Owner:CJ CHEILJEDANG CORP

Method for the production of polyunsaturated fatty acids

The present invention relates to a process for producing polyunsaturated fatty acids in an organism by introducing nucleic acids into the organism which code for polypeptides having acyl-CoA:lysophospholipid a cyltransferase activity. Advantageously, these nucleic acid sequences may, if appropriate together with further nucleic acid sequences coding for biosynthesis polypeptides of the fatty acid or lipid metabolism, be expressed in the transgenic organism. The invention furthermore relates to the nucleic acid sequences, to nucleic acid constructs comprising the nucleic acid sequences of the invention, to vectors comprising the nucleic acid sequences and / or the nucleic acid constructs and to transgenic organisms comprising the abovementioned nucleic acid sequences, nucleic acid constructs and / or vectors. A further part of the invention relates to oils, lipids and / or fatty acids produced by the process of the invention and to their use.
Owner:BASF PLANT SCI

Regulation of food intake and glucose production by modulation of long-chain fatty acyl-coa levels in the hypothalamus

Methods of reducing food intake and glucose production in a mammal, or restoring hepatic autoregulation are provided. The methods involve increasing long-chain fatty acyl-Co-A (LC-CoA) levels in the hypothalamus, or stimulating efferent fibers in the hepatic branch of the vagus nerve. Also provided are methods of increasing food intake and glucose production in a mammal. The methods involve decreasing long-chain fatty acyl-Co-A (LC-CoA) levels in the hypothalamus of the mammal.
Owner:NAT INST OF HEALTH REPRESENTED BY THE SEC OF THE DEPT OF HEALTH & HUMAN SERVICES NAT INST OF HEALTH

Fermentative production of acetone from renewable resources by means of novel metabolic pathway

The invention describes a process for preparing acetone starting from acetyl-coenzyme A comprising process steps A. enzymatic conversion of acetyl-CoA into acetoacetyl-CoA B. enzymatic conversion of acetoacetyl-CoA into acetoacetate and CoA and C. decarboxylation of acetoacetate to acetone and CO2, which is characterized in that the coenzyme A is not transferred in process step B to an acceptor molecule. In addition, process step B is surprisingly catalysed by enzymes of the classes of acyl-CoA thioesterase, acyl-CoA synthetase or acyl-CoA thiokinase.A completely novel metabolic pathway is concerned, because the enzymatic hydrolysis of acetoacetyl-CoA without simultaneous transfer of CoA to a receptor molecule has never previously been described for any microbial enzyme.
Owner:EVONIK OPERATIONS GMBH

Polyunsaturated fatty acid production in heterologous organisms using pufa polyketide synthase systems

Disclosed are novel acyl-CoA synthetases and novel acyltransferases, nucleic acid molecules encoding the same, recombinant nucleic acid molecules and recombinant host cells comprising such nucleic acid molecules, genetically modified organisms (microorganisms and plants) comprising the same, and methods of making and using the same. Also disclosed are genetically modified organisms (e.g., plants, microorganisms) that have been genetically modified to express a PKS-like system for the production of PUFAs (a PUFA PKS system or PUFA synthase), wherein the organisms have been modified to express an acyl-CoA synthetase, to express an acyl transferase, to delete or inactivate a fatty acid synthase (FAS) expressed by the organism, to reduce competition for malonyl CoA with the PUFA synthase or toincrease the level of malonyl CoA in the organism, and in one aspect, to inhibit KASII or KASIII. Additional modifications, and methods to make and use such organisms, in addition to PUFAs and oils o btained from such organisms, are disclosed, alone with various products including such PUFAs and oils.
Owner:DSM IP ASSETS BV

Production of dicarboxylic acids by improved mutant strains of yarrowia lipolytica

InactiveUS20100041115A1Reduce accumulationHighly inducibleFungiEnzymesAlkaneBiotechnology
The invention concerns a method for producing dicarboxylic acids (DCA) with long hydrocarbon chains, also called diacids, which consists in culturing a mutant strain of Yarrowia lipolytica obtained by mutagenesis directed and more particularly disrupted at least for the POX2, POX3, POX4 and POX5 genes encoding acyl-CoA oxydase, in a medium consisting essentially of an energetic substrate including at least one carbon source and one nitrogen source and in subjecting said strain to a bioconversion substrate selected among n-alkanes of at least 10 carbon atoms, fatty acids of at least 10 carbon atoms, their alkyl esters and natural oils.
Owner:INST FR DU PETROLE +2

Acyl-acp wax ester synthases

The invention relates to acyl-CoA-independent methods of producing a wax ester in recombinant host cells engineered to express an acyl-ACP wax ester synthase, and an alcohol-forming acyl-ACP reductase. The methods of the invention may take place in photosynthetic microorganisms, and particularly in cyanobacteria. Isolated nucleotide molecules and vectors expressing an acyl-ACP wax ester synthase and / or an alcohol-forming acyl-ACP reductase, recombinant host cells expressing an acyl-ACP wax ester synthase and optionally an alcohol-forming acyl-ACP reductase, and systems for producing a wax ester via an acyl-CoA-independent pathway, are also provided.
Owner:EXXON RES & ENG CO

Production method for C8:0/C10:0/C12:0/C14:0 medium-chain fatty acid and ethyl ester thereof

The invention relates to a production method for synthesizing C8:0 / C10:0 / C12:0 / C14:0 medium-chain fatty acid and ethyl ester thereof by using engineering Escherichia coli. The production method comprises the following steps of: cloning thioesterase genes with different specificities chFatB / ucFatB / ccFatB in cuphea / laurel / camphorwood into an expression vector pETDuet-1 to obtain a corresponding recombinant plasmid; transferring the recombinant plasmid into Escherichia coli BL21, performing isopropyl-beta-d-thiogalactoside (IPDT) induction expression, and specifically hydrolyzing acyl carrier protein (ACP) with specific chain length by using the expressed thioesterase to obtain medium-chain fatty acid; cloning acyltransferase gene (atfA) in acinetobacter into expression vectors pETDuet-chFatB / pETDuet-ucFatB / pETDuet-ccFatB to obtain corresponding recombinant plasmids; and transferring the recombinant plasmids into the Escherichia coli BL21, performing IPTG induction expression, performing acyl transfer reaction on exogenously fed ethanol and acyl-CoA formed by the medium-chain fatty acid intracellularly by using the co-expressed acyltransferase to obtain fatty acid ethyl ester.
Owner:BEIJING UNIV OF CHEM TECH

Use of a class of enzymes and their encoding genes to increase the oil content in transgenic organisms

The present invention relates to the use of a novel enzyme and its encoding gene for transformation. More specifically, the invention relates to the use of a gene encoding an enzyme with acyl-CoA:diacylglycerol acyltransferase activity. This gene expressed alone in transgenic organisms will increase the total amount of oil (i.e. triacylglycerols) that is produced.
Owner:SCANDINAVIAN BIOTECH RES SCANBI

Plant sterol acyltransferases

The present invention is directed to lecithin:cholesterol acyltransferase-like polypeptides (LCAT) and acyl CoA:cholesterol acyltransferases-like polypeptides (ACAT). The invention provides polynucleotides encoding such cholesterol:acyltansferases-like polypeptides, polypeptides encoded by such polynucleotides, and the use of such polynucleotides to alter sterol composition and oil production in plants and host cells. Also provided are oils produced by the plants and host cells containing the polynucleotides and food products, nutritional supplements, and pharmaceutical composition containing plants or oils of the present invention. The polynucleotides of the present invention include those derived from plant sources.
Owner:MONSANTO TECH LLC

Gene disruptants producing fatty acyl-coa derivatives

This invention provides microbial organisms, particularly yeasts such as Yarrowia lipolytica, that have one or more disrupted genes. The gene disruption(s) may yield improved production of fatty acyl-CoA derivatives.
Owner:SHELL OIL CO

Sustained release of apo a-i mimetic peptides and methods of treatment

A method including advancing a delivery device through a lumen of a blood vessel to a particular region in the blood vessel; and introducing a composition including a sustained-release carrier and an apolipoprotein A-I (apo A-I) synthetic mimetic peptide into a wall of the blood vessel at the particular region or a perivascular site, wherein the peptide has a property that renders the peptide effective in reverse cholesterol transport. A composition including an apolipoprotein A-I (apo A-I) synthetic peptide, or combination of an apo A-I synthetic mimetic peptide and an Acyl CoA cholesterol: acyltransferase (ACAT) inhibitor in a form suitable for delivery into a blood vessel, the peptide including an amino acid sequence in an order reverse to an order of various apo A-I mimetic peptides, or endogenous apo A-I analogs, or a chimera of helix 1 and helix 9 of endogenous apo A-I.
Owner:ABBOTT CARDIOVASCULAR

Acyl CoA:cholesterol acyltransferase (ACAT-2)

Nucleic acid compositions encoding novel ACAT proteins, as well as the novel ACAT-2 proteins, (ACAT-2) are provided. Also provided are methods of producing the subject nucleic acid and protein compositions. The subject polypeptide and nucleic acid compositions find use in a variety of applications, including research, diagnostic, and therapeutic agent screening applications, as well as in treatment therapies for disease conditions associated with ACAT-2 activity.
Owner:THE J DAVID GLADSTONE INST A TESTAMENTARY TRUST ESTABLISHED UNDER THE WILL OF J DAVID GLADS +1

Production of fatty acids esters

ActiveUS20160060663A1High activityBacteriaBiofuelsAcyl coenzyme AWax-ester synthase
A microbial cell is used for producing at least one fatty acid ester, wherein the cell is genetically modified to contain (i) at least one first genetic mutation that enables the cell to produce at least one fatty acid and / or acyl coenzyme A (CoA) thereof by increased enzymatic activity in the cell relative to the wild type cell of malonyl-CoA dependent and malonyl-ACP independent fatty acyl-CoA metabolic pathway, wherein the fatty acid contains at least 5 carbon atoms; and (ii) a second genetic mutation that increases the activity of at least one wax ester synthase in the cell relative to the wild type cell and the wax ester synthase has sequence identity of at least 50% to a polypeptide of SEQ ID NO: 1-8 and combinations thereof or to a functional fragment of any of the polypeptides for catalyzing the conversion of fatty acid and / or acyl coenzyme A thereof to the fatty acid ester.
Owner:CARGILL INC

A method of selectively producing male or female sterile plants

A method of producing male or female sterile plants comprising the steps of transforming plant material with a polynucleotide which encodes at least one enzyme which reacts with a non-phytotoxic substance to produce a phytotoxic one, and regenerating the thus transformed material into a plant, wherein the said non-phytotoxic substance is applied to the plant up to the time of male or female gamete formation and / or maturation, so that the non-phytotoxic substance provides for the production of a phytotoxic one which selectively prevents the formation of or otherwise renders the said gametes non-functional, wherein the enzyme is expressed preferentially in either male or female reproductive structures, characterised in that (i) the non-phytotoxic substance is selected from the group consisting of ester derivatives of non-phosphonate herbicides which herbicides are directly phytotoxic to non-green tissue, D-alpha amino acids, peptide derivatives of non-protein D-alpha amino acids, S-enantiomers of aryloxyphenoxypropionates and S-enantiomers of ester derivatives of aryloxyphcnoxypropionatcs and (ii) the enzyme is selected from the group consisting of carboxylesterases, D-amino acid oxidases, D-amino acid dehydrogenases, D-amino acid racemases, 2-arylpropionyl-CoA epimerases, alpha-methylacyl-CoA racemases, thioesterases and acyl-CoA synthetases.
Owner:SYNGENTA BIO TECH CHINA

Insecticidal compositions comprising compounds having inhibitory activity versus acyl coa: cholesterol acyltransferase or salts thereof as effective ingredients

The present invention relates to insecticidal compositions comprising compounds having an inhibitory activity versus acyl CoA:cholesterol acyltransferase (ACAT) or salts thereof as effective ingredients. The compounds having inhibitory activity versus ACAT have an excellent insecticidal effect by inhibiting sterol metabolism in noxious insects. Therefore, the compounds of the present invention can be used as safe and effective insecticides.
Owner:KOREA RES INST OF BIOSCI & BIOTECH

Sustained release of apo a-i mimetic peptides and methods of treatment

A method including advancing a delivery device through a lumen of a blood vessel to a particular region in the blood vessel; and introducing a composition including a sustained-release carrier and an apolipoprotein A-I (apo A-I) synthetic mimetic peptide into a wall of the blood vessel at the particular region or a perivascular site, wherein the peptide has a property that renders the peptide effective in reverse cholesterol transport. A composition including an apolipoprotein A-I (apo A-I) synthetic peptide, or combination of an apo A-I synthetic mimetic peptide and an Acyl CoA cholesterol: acyltransferase (ACAT) inhibitor in a form suitable for delivery into a blood vessel, the peptide including an amino acid sequence in an order reverse to an order of various apo A-I mimetic peptides, or endogenous apo A-I analogs, or a chimera of helix 1 and helix 9 of endogenous apo A-I.
Owner:ABBOTT CARDIOVASCULAR

Microorganism variants having hydrocarbon producing ability and method for producing hydrocarbon using the same

The present invention relates to a microorganism variant having the ability to produce hydrocarbons, including alkane, and a method of producing hydrocarbons, including alkane, using the same, and more particularly, to a microorganism variant obtained by introducing a gene encoding an enzyme converting fatty acyl-acp to free fatty acid, a gene encoding an enzyme converting free fatty acid to fatty acyl-CoA, a gene encoding an enzyme converting fatty acyl-CoA to fatty aldehyde and a gene encoding an enzyme converting fatty aldehyde to alkane into a microorganism improved so as to be suitable for the production of hydrocarbons, including alkane, and a method of producing hydrocarbons, including alkane, using the same. The microorganism variant of the present invention has high potential to be used to improve strains by additional metabolic flux engineering, and thus is useful for the industrial production of hydrocarbons, including alkane.
Owner:KOREA ADVANCED INST OF SCI & TECH

Genetically modified organism for the production of lipids

InactiveUS20120156249A1Increased level and yieldIncrease storage spaceCosmetic preparationsBiocideLipid formationSterol O-acyltransferase
The invention provides an isolated genetically modified non-mammalian organism, wherein the activity of acyl-CoA: sterol acyltransferase / sterol O-acyltransferase (EC 2.3.1.26) and / or diacylglycerol acyltransferase / diacylglycerol O-acyltranferase (EC 2.3.1.20) and / or lecithin cholesterol acyl transferase / phospholipid: diacylglycerol acyltransferase (EC 2.3.1.158) and / or acyl CoA-wax alcohol acyltransferase (EC 2.3.1.75) is reduced or abolished in comparison with a corresponding wildtype organism, methods of use of such an organism, shuttle vehicles for making such an organism and methods for producing such an organism.
Owner:NOVOZYMES AS

Prophylactic/Therapeutic Agent for Cancer

The present invention provides a preventative / therapeutic agent for cancer capable of selectively and effectively killing cancer cells. A medicament of the present invention prepared by combining at least one selected from a substance that inhibits the activity of an enzyme belonging to the acyl-CoA synthase family and a substance that inhibits expression of a gene for an enzyme belonging to the acyl-CoA synthase family, with at least one selected from a substance that inhibits the activity of fatty acid synthase and a substance that inhibits expression of a fatty acid synthase gene and the like can be used as a preventative / therapeutic agent for cancer capable of selectively and effectively killing cancer cells.
Owner:JAPANESE FOUND FOR CANCER RES +1

Methods for biological production of very long carbon chain compounds

InactiveUS20170211102A1BacteriaWaste based fuelAlkaneWax
The present disclosure provides compositions and methods for biologically producing very long carbon chain compounds (longer than C24), such as fatty acyl-CoA, fatty aldehydes, fatty alcohols, fatty ester waxes, alkanes and ketones, from recombinant C1 metabolizing microorganisms that utilize C1 substrates, such as methane or natural gas as a feedstock.
Owner:CALYSTA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products