Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

87 results about "Boundary plane" patented technology

Boundary acoustic wave device

A boundary acoustic wave device is provided in which an increase in the conductor resistance can be suppressed and a satisfactorily high electromechanical coupling coefficient K2 can be achieved even when the frequency is increased. The boundary acoustic wave device includes a first medium, a second medium, and an IDT provided therebetween. In the boundary acoustic wave device, a plane that separates the IDT into two equal parts in the thickness direction is defined as a boundary plane, the energy of boundary acoustic waves that is present at the first medium side of the boundary plane is represented by E1, and the energy that is present at the second medium side of the boundary plane is represented by E2. Furthermore, under the condition that an IDT including only the conductive layer having the highest density among the plurality of conductive layers constituting the IDT is configured so that the sound velocity of boundary acoustic waves when the IDT includes the plurality of conductive layers is equal to the sound velocity of boundary acoustic waves when the IDT includes only the conductive layer having the highest density, the energy of boundary acoustic waves that is present at the first medium side of the boundary plane is represented by E1′ and the energy that is present at the second medium side of the boundary plane is represented by E2′. In this case, the relationship E1/E2>E1′/E2′ is satisfied.
Owner:MURATA MFG CO LTD

Liquid crystal display

Two electrodes parallel to each other are formed on one of two substrates, homeotropic alignment films are formed on the substrates and a liquid crystal material having positive dielectric anisotropy is injected between the substrates. When a voltage is appled to the two electrodes, a parabolic electric field between the electrodes drives the liquid crystal molecules. Since the generated electric field is symmetrical with respect to the boundary-plane equal distance from each of the two electrodes, the liquid crystal molecules are symmetrically aligned with respect to the boundary-plane, and the optical characteristic is compensated in both regions divided by the boundary-plane, thereby obtaining a wide viewing angle. The electric field does not exert influences on the liquid crystal molecules on the boundary-plane since the electric field on the boundary-plane is parallel to the substrates and perpendicular to the two electrodes and thus, it is perpendicular to the liquid crystal molecules. Here, the polarization of the light is changed while passing through the liquid crystal layer and as a result, only a part of the light passes through the polarizing plate The transmittance of the light can be varied by controlling the magnitude of voltage applied to the two electrodes. The alignment direction of the liquid crystal molecules is changed in both regions of a bent portion of the electrodes by forming the electrodes in the saw shape in a pixel or in by pixel, and the retardation of the light is compensated, thereby obtaining a wider viewing angle.
Owner:SAMSUNG DISPLAY CO LTD

Numerical simulation and limit equilibrium calculation-based landslide hazard assessment method

The invention relates to a numerical simulation and limit equilibrium calculation-based landslide hazard assessment method. The assessment method comprises the steps of building a corresponding numerical model by adopting a large deformation numerical simulation method in combination with field survey data and related modeling methods, and determining landslide body form contour lines and key position coordinates of different positions in a landslide path; based on a ring shear or direct shear test, determining residual shear strength of a landslide body-slope surface boundary plane; analyzingand calculating landslide body factors-of-safety of different positions and landslide body forms in the landslide path by utilizing a limit equilibrium method, namely, performing FOS calculation; determining FOS specifications of specification requirements, wherein indexes needed to be considered for determination of the specific FOS include a sliding distance, a landslide speed, the number of people in a hazard range, and a land resource type of a hazard-bearing body; and establishing a landslide hazard degree calculation formula and determining landslide hazard level judgment standards. Themethod is suitable for hazard assessment of all types of soil landslides, and has good application prospects.
Owner:HEBEI UNIV OF TECH

Boundary acoustic wave device

A boundary acoustic wave device is provided in which an increase in the conductor resistance can be suppressed and a satisfactorily high electromechanical coupling coefficient K2 can be achieved even when the frequency is increased. The boundary acoustic wave device includes a first medium, a second medium, and an IDT provided therebetween. In the boundary acoustic wave device, a plane that separates the IDT into two equal parts in the thickness direction is defined as a boundary plane, the energy of boundary acoustic waves that is present at the first medium side of the boundary plane is represented by E1, and the energy that is present at the second medium side of the boundary plane is represented by E2. Furthermore, under the condition that an IDT including only the conductive layer having the highest density among the plurality of conductive layers constituting the IDT is configured so that the sound velocity of boundary acoustic waves when the IDT includes the plurality of conductive layers is equal to the sound velocity of boundary acoustic waves when the IDT includes only the conductive layer having the highest density, the energy of boundary acoustic waves that is present at the first medium side of the boundary plane is represented by E1′ and the energy that is present at the second medium side of the boundary plane is represented by E2′. In this case, the relationship E1 / E2>E1′ / E2′ is satisfied.
Owner:MURATA MFG CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products