Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

145 results about "Heat pulse" patented technology

Thermo-mechanical actuator drop-on-demand apparatus and method with multiple drop volumes

An apparatus and method of operating a liquid drop emitter, such as an ink jet device, for emitting liquid drops of different volumes. The liquid drop emitter comprises a chamber, filled with a liquid, having a nozzle for emitting drops of the liquid, a thermo-mechanical actuator having a moveable portion within the chamber for applying pressure to the liquid at the nozzle, and apparatus adapted to apply heat pulses to the thermo-mechanical actuator. The method for operating comprises applying a first heat pulse having a first power P1, first pulse duration τp1, and first energy E1=P1×τp1, displacing the movable portion of the actuator so that a drop is emitted having a first drop volume Vd1, and traveling substantially at the target velocity v0; and applying a second heat pulse having a second power P2, second pulse duration τp2, and second energy E2=P2×τp2, displacing the movable portion of the actuator so that a drop is emitted having a second drop volume Vd2 and traveling substantially at the target velocity v0, wherein Vd2>Vd1, E2>E1, τp2>τp1, and P2<P1. An alternate method for operating causes the emission of drops having different volumes traveling at different velocities wherein all velocities are within a pre-determined drop velocity range, vd min to vd max. Further methods for operating an ink jet printhead cause the emission of drops having different volumes and velocities wherein the triggering of the drop emission is delayed so as to result in synchronized arrival times at a print plane.
Owner:EASTMAN KODAK CO

Thermally conductive thermal actuator and liquid drop emitter using same

A thermal actuator for a micro-electromechanical device, especially a liquid drop emitter for ink jet printing, is disclosed. The thermal actuator comprises a base element and a movable element extending from the base element and residing at a first position. The movable element includes a barrier layer constructed of a barrier material having low thermal conductivity material, bonded between a first layer and a second layer; wherein the first layer is constructed of a first material having a high coefficient of thermal expansion and the second layer is constructed of a second material having a high thermal conductivity and a high Young's modulus. An apparatus is provided adapted to apply a heat pulse directly to the first layer, causing a thermal expansion of the first layer relative to the second layer and deflection of the movable element to a second position, followed by relaxation of the movable element towards the first position as heat diffuses through the barrier layer to the second layer. Configurations of the movable element as a cantilever, doubly-anchored beam and clamped plate are disclosed. Diamond and silicon carbide materials are well suited for use as the second material. Titanium aluminide is a preferred material for the first material.
Owner:EASTMAN KODAK CO

Doubly-anchored thermal actuator having varying flexural rigidity

InactiveUS7188931B2Large force magnitude and accelerationPrintingFluid controlLight energy
A doubly-anchored thermal actuator for a micro-electromechanical device such as a liquid drop emitter or a fluid control microvalve is disclosed. The thermal actuator is comprised of a base element formed with a depression having opposing anchor. A deformable element, attached to the base element at the opposing anchor edges, is constructed as a planar lamination including a first layer of a first material having a low coefficient of thermal expansion and a second layer of a second material having a high coefficient of thermal expansion. The deformable element has anchor portions adjacent the anchor edges and a central portion between the anchor portions wherein the flexural rigidity of the anchor portions is substantially less than the flexural rigidity of the central portion. The doubly-anchored thermal actuator further comprises apparatus adapted to apply a heat pulse to the deformable element that causes a sudden rise in the temperature of the deformable element. The deformable element bows outward in a direction toward the second layer, and then relaxes to a residual shape as the temperature decreases. The doubly-anchored thermal actuator is configured with a liquid chamber having a nozzle or a fluid flow port to form a liquid drop emitter or a fluid control microvalve, or to activate an electrical microswitch. Heat pulses are applied to the deformable element by resistive heating or by light energy pulses.
Owner:EASTMAN KODAK CO

Method for measuring thermophysical parameters of translucent material with transient photothermal signals generated by heating pulse lasers

The invention relates to a method for measuring thermophysical parameters of a translucent material, in particular to a method for measuring thermophysical parameters of a translucent material with transient photothermal signals generated by heating pulse lasers. The method comprises the steps that the surface of one side of the translucent material is irradiated by the lasers, a thermocouple thermodetector is used for measuring and recording the changes of the temperature of the two surfaces of the material along with time, and a laser power meter is synchronously used for respectively measuring the hemispherical reflecting radiation signals of the laser incidence side of a test-piece and the hemispherical transmission radiation signals of the laser emitting side of the test-piece. According to the laser transmission radiation signals, the reflecting radiation signals and the temperature, changed along with the time, of the two surfaces, the absorption coefficient, the scattering coefficient and the heat conduction coefficient of the translucent material are obtained on the basis of an inverse problem solving technology. A direct problem model and an inverse problem model for measuring the absorption coefficient, the scattering coefficient and the heat conduction coefficient of the translucent material are built, and the absorption coefficient, the scattering coefficient and the heat conduction coefficient of the translucent material can be simultaneously measured simply, fast and accurately through the inverse problem solving technology.
Owner:HARBIN INST OF TECH

Tapered multi-layer thermal actuator and method of operating same

InactiveUS20050052498A1Low energy inputRapid restoration of the actuatorLiquid surface applicatorsCoatingsEngineeringThermal expansion
An apparatus for and method of operating a thermal actuator for a micromechanical device, especially a liquid drop emitter such as an ink jet printhead, is disclosed. The disclosed thermal actuator comprises a base element and a cantilevered element including a thermo-mechanical bender portion extending from the base element to a free end tip. The thermo-mechanical bender portion includes a barrier layer constructed of a dielectric material having low thermal conductivity, a first deflector layer constructed of a first electrically resistive material having a large coefficient of thermal expansion, and a second deflector layer constructed of a second electrically resistive material having a large coefficient of thermal expansion wherein the barrier layer is bonded between the first and second deflector layers. The thermo-mechanical bender portion further has a base end and base end width, wb, adjacent the base element, and a free end and free end width, wf, adjacent the free end tip, wherein the base end width is substantially greater than the free end width. A first heater resistor is formed in the first deflector layer and adapted to apply heat energy having a first spatial thermal pattern which results in a first deflector layer base end temperature increase, ΔT1b, that is greater than a first deflector layer free end temperature increase, ΔT1f. A second heater resistor is formed in the second deflector layer and adapted to apply heat energy having a second spatial thermal pattern which results in a second deflector layer base end temperature increase, ΔT2b that is greater than a second deflector layer free end temperature increase, ΔT2f. Application of an electrical pulse to either the first or second heater resistors causes deflection of the cantilevered element, followed by restoration of the cantilevered element to an initial position as heat diffuses through the barrier layer and the cantilevered element reaches a uniform temperature. For liquid drop emitter embodiments, the thermal actuator resides in a liquid-filled chamber that includes a nozzle for ejecting liquid. Application of electrical pulses to the heater resistors is used to adjust the characteristics of liquid drop emission. The barrier layer exhibits a heat transfer time constant τB. The thermal actuator is activated by a heat pulses of duration τP wherein τP<½τB.
Owner:EASTMAN KODAK CO

Experimental device for testing heat conductivity coefficient of building material based on quasi steady state and unsteady state methods

The invention provides an experimental device for testing a heat conductivity coefficient of a building material based on quasi steady state and unsteady state methods, relates to the field of a testing technology of thermophysical parameters of a building material, and solves the problems that an existing thermophysical parameter experimental device can not simultaneously load the measurement processes by using three methods including a quasi steady state method, a normal power method and a heat pulse method, and one-time testing time is long and a measurement maximum relative error is large. An anode and a cathode of a low-potential potentiometer are correspondingly connected with a switch control interface of an oil immersed key conversion switch; thermoelectromotive force signals output by thermocouples are respectively connected into a thermoelectromotive force signal output end of the oil immersed key conversion switch; cold ends of the thermocouples are respectively inserted into an ice bottle containing an ice-water mixture; measuring ends of the thermocouples are respectively contacted with a testing piece to be tested; a heating resistor is used for heating the testing piece to be tested. The theoretical error analysis and the actual measurement prove that the measurement maximum relative errors are as follows: the heat conductivity coefficient is less than or equal to 5.1%, the thermal diffusivity is less than or equal to 9.2% and the specific heat value is less than or equal to 7.7%; the requirement on precision by engineering is met.
Owner:HARBIN INST OF TECH

Plant stemflow velocity measuring method and device thereof

The invention relates to a plant stemflow flow rate measurement method and the device for measuring the stemflow flow rate of a plant minute stem or a herbal plant by using the heat-pulse tracing technology; a heater is arranged on the plant stem the stemflow rate of which needs to be measured; the upper and lower parts of the plant stem which are away from the heater with the equal distance S are respectively provided with a pair of temperature sensors, and the two sensors of each pair of temperature sensors are separately arranged along the up and down direction of the stem for detecting temperature differences; the heater is started to carry out an instant heating to the stem, at the same time, the heater is cleared to zero and two timers are started; when the upper and lower pairs of temperature sensors respectively detect the temperature differences, the corresponding timer is closed, and the recording times of the two timers and the S are substituted into a formula to get the stemflow flow rate, thus effectively reducing the heating amount of the stem; the invention is not only applicable to common fruit bearing forest and other woody plants, but also expands the heat-pulse tracing technology to the stemflow rate measurement of plant minute stem or herbal plant, and the invention has the advantages of stable work, economy, practicability, safety, reliability and high accuracy.
Owner:FARMLAND IRRIGATION RES INST CHINESE ACAD OF AGRI SCI

Doubly-anchored thermal actuator having varying flexural rigidity

A doubly-anchored thermal actuator for a micro-electromechanical device such as a liquid drop emitter or a fluid control microvalve is disclosed. The thermal actuator is comprised of a base element formed with a depression having opposing anchor. A deformable element, attached to the base element at the opposing anchor edges, is constructed as a planar lamination including a first layer of a first material having a low coefficient of thermal expansion and a second layer of a second material having a high coefficient of thermal expansion. The deformable element has anchor portions adjacent the anchor edges and a central portion between the anchor portions wherein the flexural rigidity of the anchor portions is substantially less than the flexural rigidity of the central portion. The doubly-anchored thermal actuator further comprises apparatus adapted to apply a heat pulse to the deformable element that causes a sudden rise in the temperature of the deformable element. The deformable element bows outward in a direction toward the second layer, and then relaxes to a residual shape as the temperature decreases. The doubly-anchored thermal actuator is configured with a liquid chamber having a nozzle or a fluid flow port to form a liquid drop emitter or a fluid control microvalve, or to activate an electrical microswitch. Heat pulses are applied to the deformable element by resistive heating or by light energy pulses.
Owner:EASTMAN KODAK CO

Device for measuring multi-passage heat conductivity

The invention relates to a device for measuring the multi-passage heat conductivity, comprising two paths of independent power modules, an upper computer, a main control module, a photon coupled isolation module, a heat pulse control and excitation module, a multi-passage control module and a temperature collection module. The upper computer is respectively connected with a singlechip of the main control module and a multimeter in the temperature collection module through a USB; each I / O in the singlechip is respectively connected with the heat pulse control and excitation module, the multi-passage control module and the temperature collection module after being subjected to photo coupled isolation; the device is provided with two constant-current source circuits and adopts closed loop feedback to realize power constant value output; the multi-passage control module comprises a heating module and a measuring module which both have eight paths of passages; and the main control module selects any passage for collecting, preserving and calculating data in real time. The device has the advantages of convenient measurement, little error, high efficiency, and the like, meets the requirement of high-precision heat conductivity test, and can be further used for testing and researching the heat conductivity of solid body, powder, biological tissue, and the like.
Owner:CHINA UNIV OF GEOSCIENCES (WUHAN) +1

Wireless plant stem flow detection device based on laser heat pulse

InactiveCN101413815ACan respond to physiological characteristicsResponse Physiological CharacteristicsVolume/mass flow by thermal effectsVoltage converterWireless data
The invention discloses a wireless plant stem flow detection device based on a laser heat pulse. The wireless plant stem flow detection device comprises a microprocessor, a laser heat pulse generator, a stem flow sensor, a calendar chip, a voltage converter, a power supply, a wireless communication module, a keyboard, an LCD module, an RS232 interface and a USB interface module. The laser heat pulse is taken as the heat pulse of the stem flow sensor, and temperature is detected by an infrared temperature probe, the contact of the detected stem with the detection device is avoided by the heat source and the detection method, thus reducing the impact on the stem. Two infrared temperature probes are respectively arranged at the upper side and the lower side of an optical fiber, are inserted into foam enwinding the plant stem to be detected and do not contact the stem; the two infrared temperature probes are respectively connected with the microprocessor, and the optical fiber is connected with the laser heat pulse generator. A wireless data communication method of ZigBee communication protocol is employed to facilitate the device installation and the data acquisition. The wireless plant stem flow detection device can be used for measuring the stem flow of herbaceous plants or smaller stems.
Owner:ZHEJIANG UNIV

Doubly-anchored thermal actuator having varying flexural rigidity

InactiveUS7175258B2Large force magnitude and accelerationPrintingElectricityElectrical resistance and conductance
A doubly-anchored thermal actuator for a micro-electromechanical device such as a liquid drop emitter or a fluid control microvalve is disclosed. The thermal actuator is comprised of a base element formed with a depression having opposing anchor. A deformable element, attached to the base element at the opposing anchor edges, is constructed as a planar lamination including a first layer of a first material having a low coefficient of thermal expansion and a second layer of a second material having a high coefficient of thermal expansion. The deformable element has anchor portions adjacent the anchor edges and a central portion between the anchor portions wherein the flexural rigidity of the anchor portions is substantially less than the flexural rigidity of the central portion. The doubly-anchored thermal actuator further comprises apparatus adapted to apply a heat pulse to the deformable element that causes a sudden rise in the temperature of the deformable element. The deformable element bows outward in a direction toward the second layer, and then relaxes to a residual shape as the temperature decreases. The doubly-anchored thermal actuator is configured with a liquid chamber having a nozzle or a fluid flow port to form a liquid drop emitter or a fluid control microvalve, or to activate an electrical microswitch. Heat pulses are applied to the deformable element by resistive heating or by light energy pulses.
Owner:ABLECO FINANCE LLC AS AGENT +1

Combustion control method for regenerative pulse heating furnace

The invention discloses a combustion control method for a regenerative pulse heating furnace. The combustion control method includes acquiring a set flow value of a current section and a flow grading threshold table specified by a technology, dividing the set flow value by the maximum flow value of the current section to acquire a set flow percentage, comparing the set flow percentage to the flow grading threshold table and determining a current new flow grade and the number of pairs of operating burners; computing a flue gas temperature curve corresponding to a given regenerative reversal cycle by the aid of a regenerative box model according to standard flue gas flow and the furnace gas temperature which correspond to the new flow grade; performing interpolation according to the regenerative box flue gas temperature specified by the technology and the flue gas temperature curve to determine a regenerative reversal cycle corresponding to the flue gas temperature; determining the number of operating burners, the total number of available burners in the section and a regenerative reversal cycle in the section according to the new flow grade and determining a regenerative pulse cycle and a grouping rolling process; and performing regenerative combustion control and regenerative pulse logic control according to the regenerative reversal cycle, the regenerative pulse cycle and the grouping rolling process.
Owner:BAOSHAN IRON & STEEL CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products