Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

283 results about "Photonic crystal waveguides" patented technology

Photonic crystal magneto-optical circulator and preparation method thereof

The invention relates to a photonic crystal magneto-optical circulator comprising a first medium material columns in an air background, the first medium material columns are arranged in the shape of two-dimensional tetragonal lattice; the photonic crystal magneto-optical circulator also comprises a photonic crystal waveguide which includes a transverse photonic crystal waveguide and a longitudinal photonic crystal waveguide which are mutually intercrossed, a second medium material column used for guiding light and positioned at the cross connection of the transverse photonic crystal waveguideand the longitudinal photonic crystal waveguide, four identical magneto-optical material columns uniformly positioned around the second medium material columns, and at least three identical third medium material columns respectively positioned outside the three magneto-optical material columns. The photonic crystal magneto-optical circulator provided by the invention can respectively realize single direction optical circulating transmission among three ports arranged in the shape of T and among four ports arranged in the shape of a cross. The photonic crystal magneto-optical circulator provided by the invention is advantageous in that it has a concise form and a compact structure, and is suitable for serving as an anti-interference component in a photonic crystal integrated optical circuit.
Owner:SHENZHEN UNIV

Photonic crystal waveguide based superefficient compact T-shaped circulator

The invention discloses a photonic crystal waveguide based superefficient compact T-shaped circulator. The photonic crystal waveguide based superefficient compact T-shaped circulator comprises a T-shaped photonic crystal waveguide with three end openings; a square magneto-optical dielectric rod is arranged in the center of the T-shaped photonic crystal waveguide; four square dielectric rods are arranged at four corners in the center of the crisscrossing waveguide; angles of the four square dielectric rods are cut to form into isosceles right triangles with the length of right angle sides to be identical to that of sides of background square dielectric rods to form into corner dielectric rods; the corner dielectric rods and left parts at corresponding lattice point positions of the corner dielectric rods are coincided or not; the insertion loss of the circulator is from 0.02db to 1db and the isolation of the two end openings is larger than 14db. The photonic crystal waveguide based superefficient compact T-shaped circulator has the advantages of being small in size, high in integration level, high in electromagnetic wave transmission efficiency, beneficial to integration and efficient and allowing circuiting and being widely applied to microwave, terahertz and light communication wave bands.
Owner:SHENZHEN UNIV

Integrated photon crystal double waveguide back coupling fluid refractive index sensor

The invention belongs to the photoelectronic technical field, characterized in that: it adopts electron beam exposure and dry-etching process to form a photon crystal double-waveguide structure on semiconductor, where the two ends of the photon crystal waveguide are connected with light guide connection light waveguides and it removes part of the sacrificial layer by wet etching process to form a bridge support structure. By reverse coupling action of the photon crystal double waveguide, the light of evenly symmetric transmission mode cross over frequency can be reversely coupled from straight-through waveguide into coupling waveguide so as to cause the transmission spectrum of the straight-through waveguide has obvious hollows. When the detected fluid fills periodical holes of photon crystal or upper and lower spaces of the photon crystal layer, dispersion characteristic of the transmission mode in the photon crystal double waveguide is changed, or changed by external force, which can cause variation of evenly symmetric transmission mode cross over frequency so as to cause variation of transmission spectrum of the straight-through waveguide, thus implementing microflow refractivity detection and sensing of high sensitivity and integrated photon crystal structure.
Owner:TSINGHUA UNIV

Methods, materials and devices for light manipulation with oriented molecular assemblies in micronscale photonic circuit elements with high-q or slow light

An optical device that comprises an input waveguide, an output waveguide, a high-Q resonant or photonic structure that generate slow light connected to the input waveguide and the output waveguide, and an interface, surface or mode volume modified with at least one material formed from a single molecule, an ordered aggregate of molecules or nanostructures. The optical device may include more than one input waveguide, output waveguide, high-Q resonant or photonic structure and interface, surface or mode volume. The high-Q resonant or photonic structure may comprise at least one selected from the group of: microspherical cavities, microtoroidal cavities, microring-cavities, photonic crystal defect cavities, fabry-perot cavities, photonic crystal waveguides. The ordered aggregate of molecules or nanostructures comprises at least one selected from the group of: organic or biological monolayers, biological complexes, cell membranes, bacterial membranes, virus assemblies, nanowire or nanotube assemblies, quantum-dot assemblies, one or more assemblies containing one or more rhodopsins, green fluorescence proteins, diarylethers, lipid bilayers, chloroplasts or components, mitochondria or components, cellular or bacterial organelles or components, bacterial S-layers, photochromic molecules. Further, the molecular aggregate may exhibit a photoinduced response.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Quantum cascade laser with photonic quasi-crystal waveguide and manufacture method thereof

The invention relates to a quantum cascade laser with a photonic quasi crystal waveguide, comprising a substrate, a lower waveguide layer, a quantum cascade active area structure, an upper waveguide layer, an upper cladding, an upper covering layer, a high-doping ohmic contact layer, a photonic quasi crystal structure array, an electric insulation layer, a front electrode and a back electrode, wherein the lower waveguide layer is grown on the substrate, the middle of the lower waveguide layer is provided with a boss, and a ridge-shaped double-groove table-board structure is formed at both sides of the boss; the quantum cascade active area structure is grown on the boss of the lower waveguide layer; the upper waveguide layer is grown on the quantum cascade active area structure; the upper cladding is grown on the upper waveguide layer; the upper covering layer is grown on the upper cladding; the high-doping ohmic contact layer is grown on the upper covering layer; the photonic quasi crystal structure array is manufactured at both sides of the upper covering layer and the high-doping ohmic contact layer, the middle width is 2-10 mu m, and the widths of the photonic quasi crystal structure array at both sides are the same and are respectively 5-24 mu m; the electric insulation layer is deposited on the ohmic contact layer and covers the upper surface and the side wall of the whole ridge-shaped table-board, and the central part of the ridge-shaped table-board, covered with the insulation layer, is reserved with an electric injection window; the front electrode is manufactured on the insulation layer; and the back electrode is grown on the back of the substrate.
Owner:INST OF SEMICONDUCTORS - CHINESE ACAD OF SCI

Photonic crystal waveguide based superefficient compact cross circulator

The invention discloses a photonic crystal waveguide based superefficient compact cross circulator. The photonic crystal waveguide based superefficient compact cross circulator comprises a crisscrossing photonic crystal waveguide with four end openings; a square magneto-optical dielectric rod is arranged in the center of the crisscrossing photonic crystal waveguide; four square dielectric rods are arranged at four corners in the center of the crisscrossing waveguide; angles of the four square dielectric rods are cut to form into isosceles right triangles with the length of right angle sides to be identical to that of sides of background square dielectric rods to form into corner dielectric rods; the corner dielectric rods and left parts at corresponding lattice point positions of the corner dielectric rods are coincided or not; the insertion loss of the circulator is from 0.02db to 1db and the isolation of an isolation end and an input end is larger than 14db. The photonic crystal waveguide based superefficient compact cross circulator has the advantages of being small in size, high in integration level, high in electromagnetic wave transmission efficiency, beneficial to integration and efficient and allowing circuiting and being widely applied to microwave, terahertz and light communication wave bands.
Owner:SHENZHEN UNIV

Methods, materials and devices for light manipulation with oriented molecular assemblies in micronscale photonic circuit elements with High-Q or slow light

An optical device that comprises an input waveguide, an output waveguide, a high-Q resonant or photonic structure that generate slow light connected to the input waveguide and the output waveguide, and an interface, surface or mode volume modified with at least one material formed from a single molecule, an ordered aggregate of molecules or nanostructures. The optical device may include more than one input waveguide, output waveguide, high-Q resonant or photonic structure and interface, surface or mode volume. The high-Q resonant or photonic structure may comprise at least one selected from the group of: microspherical cavities, microtoroidal cavities, microring-cavities, photonic crystal defect cavities, fabry-perot cavities, photonic crystal waveguides. The ordered aggregate of molecules or nanostructures comprises at least one selected from the group of: organic or biological monolayers, biological complexes, cell membranes, bacterial membranes, virus assemblies, nanowire or nanotube assemblies, quantum-dot assemblies, one or more assemblies containing one or more rhodopsins, green fluorescence proteins, diarylethers, lipid bilayers, chloroplasts or components, mitochondria or components, cellular or bacterial organelles or components, bacterial S-layers, photochromic molecules. Further, the molecular aggregate may exhibit a photoinduced response.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products