Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

463 results about "Quantum interference" patented technology

Quantum interference is one of the most challenging principles of quantum theory. Essentially, the concept states that elementary particles can not only be in more than one place at any given time (through superposition ), but that an individual particle, such as a photon (light particles) can cross its own trajectory and interfere with the direction of its path.

Quantum processing device

ActiveUS20140291490A1High efficiency in photon collectionAttenuation bandwidthQuantum computersNanoinformaticsPhoton emissionPhoton detection
A device for achieving multi-photon interference, said device comprising: at least two solid state photon emitters, each solid state photon emitter comprising nuclear and electron spin states coupled together, each solid state photon emitter being configured to produce photon emission comprising a photon emission peak, wherein the photon emission peaks from different solid state photon emitters have a first frequency difference between peak intensities, and wherein the electron spin states of each solid state photon emitter are resolvable; an excitation arrangement configured to individually address the at least two solid state photon emitters; a plurality of optical out coupling structures wherein each solid state photon emitter is provided with an associated optical out coupling structure; a tuning arrangement configured to reduce the first frequency difference between the peak intensities of the photon emission peaks from the at least two solid state photon emitters to a second frequency difference which is smaller than the first frequency difference; a photon interference arrangement configured to overlap photon emissions from the at least two solid state emitters after tuning; and a detector arrangement configured to detect photon emissions from the at least two solid state emitters after tuning and passing through the photon interference arrangement, wherein the detector arrangement is configured to resolve sufficiently small differences in photon detection times that tuned photon emissions from the at least two solid state emitters are quantum mechanically indistinguishable resulting in quantum interference between indistinguishable photon emissions from different solid state photon emitters.
Owner:ELEMENT SIX TECH LTD

High-sensitivity magnetic measurement device in environment field based on disturbance compensation and realization method thereof

The invention discloses a high-sensitivity magnetic measurement device in an environment field based on disturbance compensation and a realization method thereof. In the method, the low-frequency disturbance compensation in an environment magnetic field is realized by a second feedback branch and a second magnetic flux locking loop, wherein the second feedback branch is composed of a second integrator, a low-pass filter, a second feedback resistor and a feedback coil; and the second magnetic flux locking loop is formed based on the second feedback branch. A super-magnetic conduction sensor established based on the method can realize the high-pass response frequency characteristics for the environment field and the low-pass response frequency characteristics for the circuit noise at the same time, ensures the suppression of the influence of environment field disturbance on SQUID (superconducting quantum interference device) magnetic measurement without influencing the weak signal measurement, and avoids the overflow phenomenon. Based on the super-magnetic conduction sensor, the method is suitable for the application environment in which the frequency of the magnetic field signal tobe measured is higher than the disturbance frequency band (DC-30Hz) of the environment field.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI

Magnetic-field dynamic compensation system and methods based on spatial correlation

The invention relates to a magnetic-field dynamic compensation system and methods based on spatial correlation, wherein the system can realize the dynamic compensation of environment magnetic fields at the directions of three axles through a large set and a small set of Helmholtz coil racks and two fluxgate meters based on the spatial correlation of a PID (Proportion Integration Differentiation) negative feedback electronic circuit and the fluctuation of the environment magnetic fields. The invention further discloses three methods using the system, including (1) a proportioning type magnetic-field dynamic compensation method, (2) a series type integral magnetic-field dynamic compensation method, and (3) a parallel integral type magnetic-field dynamic compensation method. The system of the invention is easy to construct, has low cost and simple operation, and can achieve excellent dynamic compensation effect, and simultaneously, the methods can maximally eliminate the affects of the fluxgate meters to other magnetic detectors at the centers of coils, and have great application prospect in extremely-low field nuclear magnetic resonance, imaging thereof and other biological magnetic researches based on an SQUID (Superconducting Quantum Interference Device).
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI

Method for quantitatively calibrating and eliminating crosstalk of SQUID (Superconducting Quantum Interference Device) planar three-shaft magnetometer

The invention relates to a method for quantitatively calibrating and eliminating the crosstalk of a SQUID (Superconducting Quantum Interference Device) planar three-shaft magnetometer, which is characterized by testing the mutual inductance between a feedback coil and an SQUID adjacent to the feedback coil to quantitatively calibrate the crosstalk when the crosstalk of the planar three-shaft magnetometer exists between the feedback coil and the SQUID, thereby eliminating the crosstalk on the basis. The method comprises the following steps of: (1) preparing the SQUID planar three-shaft magnetometer; (2) quantitatively calibrating three-shaft crosstalk; and (3) analyzing and eliminating the crosstalk. The method is characterized in that the three-shaft magnetometer comprising a planar nakedSQUID is used for replacing the traditional wire-wound magnetometer, and the mutual inductance is used as an index for calibrating the size of the crosstalk so that the crosstalk is eliminated. The method has the advantages that the SQUID planar magnetometer has high integration level so that the magnetic flux interference caused by line transmission is avoided, and the calibration and the elimination of the crosstalk ensure the optimized use of the SQUID planar magnetometer.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI

Quantum interference device, atomic oscillator and magnetic sensor

A quantum interference device for causing an electromagnetically induced transparency phenomenon to occur in an alkali metal atom by a resonant light pair including a first resonant light and a second resonant light, includes: a light source to generate a plurality of the first resonant lights different from each other in frequency by Δω and a plurality of the second resonant lights different from each other in frequency by Δω; a magnetic field generation unit that applies a magnetic field to the alkali metal atom; a light detection unit that detects intensities of lights including the first resonant lights and the second resonant lights passing through the alkali metal atom; and a control unit that controls to cause a frequency difference between the specified first resonant light and the specified second resonant light to become equal to a frequency difference corresponding to an energy difference between two ground levels of the alkali metal atom based on a detection result of the light detection unit, wherein the control unit controls at least one of the frequency Δω and intensity of the magnetic field generated by the magnetic field generation unit to satisfy at least one of 2×δ×n=Δω and Δω×n=2×δ (n is a positive integer) with respect to a frequency δ corresponding to an energy difference between two Zeeman split levels different from each other in magnetic quantum number by one among a plurality of Zeeman split levels generated in each of the two ground levels of the alkali metal atom by energy splitting due to the magnetic field.
Owner:SEIKO EPSON CORP

Optical system and atomic oscillator background

An optical system of an atomic oscillator includes: a coherent light source emitting two resonant light components each having a p-polarized light component and an s-polarized light component, the tow resonant light components being coherent light and having a different frequency each other; a polarization splitter arranged at an output side of the coherent light source, the polarization splitter transmitting one of the p-polarized light component and the s-polarized light component and changes an optical path of the other of the p-polarized light component and the s-polarized light component to be outputted; a quarter-wave plate arranged at an output side of the polarization splitter so as to convert one of circularly polarized light and linearly polarized light to the other of circularly polarized light and linearly polarized light; a gas cell in which metal atom vapor is enclosed; a light guide that guides light after passing through the gas cell back to the gas cell as a turned-back light; and a photodetector that detects the turned-back light, the turned-back light having been passed through the gas cell and changed the optical path by the polarization splitter. The atomic oscillator controls an oscillation frequency by using a light absorption characteristic caused by a quantum-interference effect when the two resonant light components are incident on the optical system.
Owner:SEIKO EPSON CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products