Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

183results about How to "Reduce light scatter" patented technology

LED light assembly having heating board

A light assembly including a housing, a plurality of light emitting diodes (LED) on a circuit board, a lens, a lens cover and a heating board positioned within the housing. The heating board is positioned behind the lens and in front of LEDs within the housing, such that light from the LEDs shines through the heating board. The heating board also includes a sensor and a microcontroller to activate, deactivate and control the heating board in response to an outside air temperature.
Owner:GRAND GENERAL ACCESSORIES LLC

Multi-assay plate cover for elimination of meniscus

A constant pathlength multi-assay plate cover for multi-assay plates, comprising, a flat top side and a flat bottom side, the bottom side having solid cylindrical projections of equal length extending downwardly from the flat bottom side, wherein each cylindrical projection is centered about the optical axis passing through a corresponding sample well of a multi-assay plate, thereby eliminating the meniscus and evaporation effects.
Owner:MOLECULAR DEVICES

Diffractive multifocal lens having radially varying light distribution

The present invention provides improved ophthalmic lenses and methods for their design and use. Monofocal and multifocal diffractive ophthalmic lenses having reduced light scatter and / or improved light energy distribution properties are provided. These properties are provided by the diffractive profiles of the invention, often having subtlely shaped echelettes with appropriately curving profiles. Light scatter may be generated by the sharp corners associated with vertical steps between adjacent conventional diffractive echelettes. Smooth diffractive profiles of the invention reduce light scatter. Light energy directed towards non-viewing diffractive orders may have a unwanted effects on vision quality. Diffractive profiles of the invention may limit the light energy in certain, selected orders, thereby improving viewing quality and mitigating unwanted effects such as dysphotopsia. Diffractive profiles of the invention can also vary the light energy distributed between individual echelettes, providing additional advantages in various viewing situations.
Owner:AMO GRONINGEN

Optical detection system

An optical detection system comprising an electromagnetic radiation source, a source radiation focusing and collimating means, a photodetector, an emitted radiation focusing means and a source radiation blocking panel. The radiation source is used to direct source radiation onto a sample which is disposed in a sample platform. The source radiation focusing and collimating means is disposed between the radiation source and the sample for focusing and collimating the source radiation onto the sample. The photodetector is adapted for receiving radiation emitted from the sample which has been focused by the emitted radiation focusing means. The source radiation blocking panel, disposed between the source radiation focusing and collimating means and the sample, is unique in that it is capable of reducing light scattering and interference, such that a clear signal from each individual sample can be obtained by the photodetector.
Owner:CE RESOURCES

Carbon Nanotube Dispersed Polar Organic Solvent and Method for Producing the Same

In the present invention, a nonionic surfactant is noticed for a function of dispersing a carbon nanotube, and it is found that a mixture solution of an amide-based organic solvent and a polyvinylpyrrolidone (PVP) or of the amide-based organic solvent, the nonionic surfactant, and the polyvinylpyrrolidone (PVP) has an excellent function as a dispersant for the carbon nanotube. Ultrasonication is required for dispersing a carbon nanotube in the dispersant. The ultrasonication maybe carried out in the step of dispersing the carbon nanotube in the nonionic surfactant and / or the amide-based polar organic solvent, and then the polyvinylpyrrolidone (PVP) may be mixed with the resultant dispersion. Alternatively, a mixture solution of the nonionic surfactant and / or the amide-based polar organic solvent, and the polyvinylpyrrolidone (PVP) is prepared, and then the ultrasonication may be carried out in the step of dispersing the carbon nanotube therein.
Owner:NAT INST OF ADVANCED IND SCI & TECH

Light-emitting devices utilizing nanoparticles

Light-emitting devices are disclosed that comprise a light source emitting first light, a first material substantially transparent to and located to receive at least a portion of the first light, and particles of a second material dispersed in the first material. The second material has an index of refraction greater than an index of refraction of the first material at a wavelength of the first light. The particles of the second material have diameters less than about this wavelength. Particles of a third material may also be dispersed in the first material.
Owner:LUMILEDS

Wavelength conversion element, method of manufacturing the same, and LED element and semiconductor laser light emitting device using wavelength conversion element

A wavelength conversion element disclosed in the present application includes a phosphor layer including a plurality of phosphor particles and a matrix that is located among the plurality of phosphor particles and is formed of zinc oxide. The zinc oxide is columnar crystals or a single crystal in a c-axis orientation.
Owner:PANASONIC CORP

Diffractive Multifocal Lens Having Radially Varying Light Distribution

The present invention provides improved ophthalmic lenses and methods for their design and use. Monofocal and multifocal diffractive ophthalmic lenses having reduced light scatter and / or improved light energy distribution properties are provided. These properties are provided by the diffractive profiles of the invention, often having subtlely shaped echelettes with appropriately curving profiles. Light scatter may be generated by the sharp corners associated with vertical steps between adjacent conventional diffractive echelettes. Smooth diffractive profiles of the invention reduce light scatter. Light energy directed towards non-viewing diffractive orders may have a unwanted effects on vision quality. Diffractive profiles of the invention may limit the light energy in certain, selected orders, thereby improving viewing quality and mitigating unwanted effects such as dysphotopsia. Diffractive profiles of the invention can also vary the light energy distributed between individual echelettes, providing additional advantages in various viewing situations.
Owner:AMO GRONINGEN

Optical polymer blend with bimodal particle sizes

An optical polymer blend includes sub-wavelength particles to modify the refractive index of a polymer to match the refractive index of micro-particles added to adjust the bulk coefficient of thermal expansion of the blend. A relatively large amount of material may be added to the resin to adjust the bulk coefficient of thermal expansion without unduly increasing the viscosity of the blend before setting. In some applications blends are used for molded or extruded optical elements, in other applications, blends are used for optical adhesives with low coefficients of thermal expansion.
Owner:VIAVI SOLUTIONS INC

Diffractive lens exhibiting enhanced optical performance

The present invention provides improved ophthalmic lenses and methods for their design and use. Monofocal and multifocal diffractive ophthalmic lenses having reduced light scatter, improved light energy distribution properties, and / or other improvements in optical performance are provided. These properties are provided, at least in part, by the diffractive profiles of the invention, often having subtlety shaped echelettes with appropriately curving profiles. Smooth diffractive profiles may be used reduce light scatter. Diffractive profiles may be configured to limit the light energy in certain selected orders, thereby improving viewing quality and mitigating unwanted effects such as dysphotopsia. Diffractive profiles of may additionally or alternatively vary the light energy distributed between individual echelettes, providing additional advantages in various viewing situations.
Owner:AMO GRONINGEN

Absorbent article with indicator

An absorbent article such as a disposable diaper is provided with an indicator adapted to become visible as soon as bodily fluid is discharged. The indicator is formed from a composite nonwoven fabric composed of a hydrophilic melt blown nonwoven fabric layer and a hydrophilic spun bond nonwoven fabric layer on which a display element is depicted and laminated on one surface of the hydrophilic melt blown nonwoven fabric layer. A first surface of the composite nonwoven fabric facing an absorbent core of the diaper is held together with the display element and a second surface of the composite nonwoven fabric facing a backsheet of the diaper is held in close contact with the inner surface of the backsheet. The display element is covered up by the composite nonwoven fabric in its dry state covers up and the display elements become visible from the outside of the backsheet through the nonwoven fabric as soon as the nonwoven fabric is wetted with bodily fluids.
Owner:UNI CHARM CORP

Optical fiber and production method thereof

An optical fiber, which has a zero-material dispersion wavelength equal to or greater than 2 μm, and a high nonlinear susceptibility χ3 equal to or greater than 1×10−12 esu, and uses tellurite glass having sufficient thermal stability for processing into a low loss fiber, employs a PCF structure or HF structure having strong confinement into a core region. This enables light to propagate at a low loss. The size and geometry of air holes formed in the core region, and the spacing between adjacent air holes make it possible to control the zero dispersion wavelength within an optical telecommunication window (1.2-1.7 μm), and to achieve large nonlinearity with a nonlinear coefficient γ equal to or greater than 500 W−1 km−1.
Owner:NIPPON TELEGRAPH & TELEPHONE CORP

LCD backlight component coatings for reducing light losses and improving in-stack light collimation

Provided are multilayer stacks for backlight units in LCD panels and methods for forming thereof. The stacks include refractive index matching layers and pressure sensitive adhesives to minimize light losses. More particularly, the stacks comprise a reflector, a light guide, a course diffuser, one or more brightness enhancing films, and a fine diffuser. A refractive index matching layer is deposited onto at least one surface of the backlight components. A pressure sensitive adhesive is deposited onto the refractive index matching layers. Alternatively, the stacks comprise two or more refractive index matching layers on each surface of the backlight components and retain an air gap between the backlight components. The refractive index matching interlayers are based on a polymer solution having about 0.1%-30% by weight of specific rigid rod-like polymer molecules. The molecules may include various cores, spacers, and sides groups to ensure their solubility, viscosity, and cross-linking ability.
Owner:LIGHT POLYMERS HLDG

High efficiency optic

ActiveUS20140009736A1Reduce light scatterOptimize light energy distributionSpectales/gogglesEye diagnosticsMedicineLight energy
Ophthalmic lenses and methods for their design and use involve displacement functions based on the sum of a continuous cosine function and a continuous sine function, optionally over a plurality of echelettes. Exemplary monofocal and multifocal diffractive ophthalmic lenses provide reduced light scatter and / or improved light energy distribution properties. Such properties can be provided by diffractive profiles, often having subtlety shaped echelettes with appropriately curving profiles. Light scatter may be generated by the sharp corners associated with vertical steps between adjacent conventional diffractive echelettes. Smooth diffractive profiles of the invention reduce light scatter. Light energy directed toward non-viewing diffractive orders may have a unwanted effects on vision quality. Diffractive profiles as described herein may limit the light energy in certain, selected orders, thereby improving viewing quality and mitigating unwanted effects such as dysphotopsia. Diffractive profiles may also vary the light energy distributed between individual echelettes, providing additional advantages in various viewing situations.
Owner:JOHNSON & JOHNSON SURGICAL VISION INC

Light assembly for automotive lighting applications

An automotive light assembly produces numerous beam patterns meeting automotive requirements through the reduction of light scatter and collection and redirection in efficiencies. A light source projects light laterally, which is collected by a light conducting body having a hub and a plurality of fingers extending from the hub. By using a plurality of small individual fingers, large and bulky light pipes are eliminated and the light collection and redirection efficiency is improved.
Owner:VARROC LIGHTING SYST SRO

Pupil dependent diffractive lens for near, intermediate, and far vision

A multifocal diffractive lens comprises a multifocal diffractive structure coupled to a refractive component. The refractive component comprises at least one curved surface. The multifocal diffractive structure comprises a first plurality of substantially monofocal echellettes having a first optical power for near vision correction and a second plurality of substantially monofocal echellettes for far vision correction. The first plurality of substantially monofocal echellettes combined with the second plurality of substantially monofocal echellettes can provide a multifocal diffractive profile having decreased light scatter, chromatic aberration, and diffraction to non-viewing orders such that dysphotopsia is substantially inhibited. A third plurality of substantially monofocal echellettes having an intermediate optical power can be combined with the first plurality of substantially monofocal echellettes and the second plurality of substantially monofocal echellettes.
Owner:JOHNSON & JOHNSON SURGICAL VISION INC

Surface relief diffractive optical elements providing reduced optical losses in electro-active lenses comprising liquid crystalline materials

InactiveUS20080273167A1Diffraction efficiency is loweredReduce light scatterDiffraction gratingsOptical partsSurface contourLiquid crystal
An electro-active lens has a first substrate with a surface relief diffractive topological profile and a second substrate positioned opposite to the first substrate having a substantially smooth topological profile. A first electrode is positioned along the surface relief diffractive topological profile of the first substrate, and a second electrode is positioned between the first electrode and second substrates. An electro-active material is positioned between the first and second electrodes. The surface relief diffractive topological profile of the first substrate has been modified to eliminate nearly vertical side walls and / or sharp, nearly discontinuous changes in the surface profile, to instead be characterized by sloped side walls and smooth changes in the surface profile, i.e., rounded corners. The radius of curvature of the rounded corners may be, by way of example only, between 1 μm and 100 μm, the slope of the side walls may be at some angle θ, or the shape of the surface profile may be determined by a mathematical smoothing function.
Owner:PIXELOPTICS

Holographic recording material composition

The present invention provides a holographic recording material composition used for storing optical information as a spatial variation of refractive index, comprising: (a) a compound having at least one polymerizable functional group; (b) a photopolymerization initiator, and (c) colloidal silica particles having an average particle diameter of from 4 to 30 nm.
Owner:TOMITA YASUO +1

Light assembly for automotive lighting applications

An automotive light assembly produces numerous beam patterns meeting automotive requirements through the reduction of light scatter and collection and redirection in efficiencies. A light source projects light laterally, which is collected by a light conducting body having a hub and a plurality of fingers extending from the hub. By using a plurality of small individual fingers, large and bulky light pipes are eliminated and the light collection and redirection efficiency is improved.
Owner:VARROC LIGHTING SYST SRO

Objective-type dark-field illumination device for microfluidic channel

InactiveUS20110157692A1Conveniently and rapidly adjustedReduce image contrastMaterial analysis by optical meansMicroscopesFluorescenceImage contrast
An objective-type dark-field illumination device for a microfluidic channel is provided and includes an optical stop having a pair of symmetric curved slits used to adjust the optical path and inner numerical aperture of a dark-field light source generated by the device. The dark-field illumination can focus on a smaller spot to illuminate a sample in the microfluidic channel by matching a pin-hole combined with a transmitter objective lens. The optical path and smaller spot is advantageous to solve the problem of a traditional dark-field illumination that may generate background light noise scattered from inner walls of the microfluidic channel to lower the image contrast. Therefore, the signal or image resolution of capturing the scattered light and / or emitted fluorescent light emitted from the sample in the microfluidic channel can be enhanced. Meanwhile, the device can simultaneously excite and detect multiple fluorescent samples with different excited wavelengths in the microfluidic channel.
Owner:NAT SUN YAT SEN UNIV

Carbon nanotube dispersed polar organic solvent and method for producing the same

In the present invention, a nonionic surfactant is noticed for a function of dispersing a carbon nanotube, and it is found that a mixture solution of an amide-based organic solvent and a polyvinylpyrrolidone (PVP) or of the amide-based organic solvent, the nonionic surfactant, and the polyvinylpyrrolidone (PVP) has an excellent function as a dispersant for the carbon nanotube. Ultrasonication is required for dispersing a carbon nanotube in the dispersant. The ultrasonication may be carried out in the step of dispersing the carbon nanotube in the nonionic surfactant and / or the amide-based polar organic solvent, and then the polyvinylpyrrolidone (PVP) may be mixed with the resultant dispersion. Alternatively, a mixture solution of the nonionic surfactant and / or the amide-based polar organic solvent, and the polyvinylpyrrolidone (PVP) is prepared, and then the ultrasonication may be carried out in the step of dispersing the carbon nanotube therein.
Owner:NAT INST OF ADVANCED IND SCI & TECH

Glass ceramic substrate made of a transparent, colored LAS glass ceramic and method for producing it

A glass ceramic substrate made of a transparent, colored LAS glass ceramic is provided. The glass ceramic has a gradient layer with keatite solid solution and an underlying core with high-quartz solid solution as predominant crystal phase. The keatite solid solution in a depth of 10 μm or greater exceeds 50% of the sum of the high-quartz solid solution proportion and keatite solid solution proportion. The ceramization includes a crystal transformation step, in which the high-quartz solid solution is transformed at a maximum temperature in the range of 910° to 980° and a time period of between 1 and 25 minutes in part into the keatite solid solution.
Owner:SCHOTT AG

Photo-patterned pre-tilt liquid crystal cells, lenses and methods

Liquid crystal cells and lenses having a variable resulting pre-tilt across two or more areas of the cell, and in particular, cells and lenses are provided wherein a resulting pre-tilt is varied across the cell according to any desired birefringence profile that can be utilized in liquid crystalline optical elements and liquid crystal displays. Methods of fabrication of the liquid crystal cells with variable resulting pre-tilt are disclosed.
Owner:CALIFORNIA STATE UNIV SACRAMENTO +1

Fluorescent material with core-shell structure and preparation method thereof

The invention provides a fluorescent material with a core-shell structure. The structural formula of the fluorescent material is SiO2@ fluorescent powder, wherein @ means SiO2 serving as a core is covered by fluorescent powder serving as a shell. The preparation method of the fluorescent material comprises the following steps: preparation of SiO2 micro-suspension, preparation of SiO2@oxalate and preparation of SiO2@ fluorescent powder. In the invention, silicon dioxide microspheres serve as cores and a precipitator is dripped to coat a fluorescent powder layer on the surface of silicon dioxide; and thus, the preparation process of the fluorescent material is simple, the requirement on the equipment is low, the preparation period is short, and the cost is low. Meanwhile, the fluorescent material preparation by the invention is uniform in particle size and shape; and thus, the bulk density of the particles is high, the luminous intensity, luminous efficiency and resolution of the particles are improved, and the light scattering of the fluorescent powder is reduced.
Owner:OCEANS KING LIGHTING SCI&TECH CO LTD +1

High resolution tiled microchannel storage phosphor based radiation sensor

X-ray imaging screens utilizing phosphors disposed in microchannels disposed in a plate. This application relates to the “tiling” of such microchannel plates to form a larger imaging area and to the use of “storage phosphors” in the microchannel plates which enables the phosphors to be read out after exposure and from the side exposed to the X-rays. The storage phosphor screens of the present invention provide significantly increased resolution than the prior art storage phosphor screens.
Owner:NANOCRYSTAL IMAGING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products