Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

88 results about "Metal oxide silicon" patented technology

Method and apparatus improving gate oxide reliability by controlling accumulated charge

ActiveUS20070069291A1Improving nonlinear responses and harmonic and intermodulaton distortion effectsReduce non-linearitySolid-state devicesElectronic switchingMOSFETDielectric
A method and apparatus are disclosed for use in improving the gate oxide reliability of semiconductor-on-insulator (SOI) metal-oxide-silicon field effect transistor (MOSFET) devices using accumulated charge control (ACC) techniques. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one embodiment, a circuit comprises a MOSFET, operating in an accumulated charge regime, and means for controlling the accumulated charge, operatively coupled to the SOI MOSFET. A first determination is made of the effects of an uncontrolled accumulated charge on time dependent dielectric breakdown (TDDB) of the gate oxide of the SOI MOSFET. A second determination is made of the effects of a controlled accumulated charge on TDDB of the gate oxide of the SOI MOSFET. The SOI MOSFET is adapted to have a selected average time-to-breakdown, responsive to the first and second determinations, and the circuit is operated using techniques for accumulated charge control operatively coupled to the SOI MOSFET. In one embodiment, the accumulated charge control techniques include using an accumulated charge sink operatively coupled to the SOI MOSFET body.
Owner:PSEMI CORP

Method and apparatus improving gate oxide reliability by controlling accumulated charge

ActiveUS7890891B2Improving nonlinear responses and harmonic and intermodulaton distortion effectsReduce non-linearitySolid-state devicesElectronic switchingMOSFETDielectric
A method and apparatus are disclosed for use in improving the gate oxide reliability of semiconductor-on-insulator (SOI) metal-oxide-silicon field effect transistor (MOSFET) devices using accumulated charge control (ACC) techniques. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one embodiment, a circuit comprises a MOSFET, operating in an accumulated charge regime, and means for controlling the accumulated charge, operatively coupled to the SOI MOSFET. A first determination is made of the effects of an uncontrolled accumulated charge on time dependent dielectric breakdown (TDDB) of the gate oxide of the SOI MOSFET. A second determination is made of the effects of a controlled accumulated charge on TDDB of the gate oxide of the SOI MOSFET. The SOI MOSFET is adapted to have a selected average time-to-breakdown, responsive to the first and second determinations, and the circuit is operated using techniques for accumulated charge control operatively coupled to the SOI MOSFET. In one embodiment, the accumulated charge control techniques include using an accumulated charge sink operatively coupled to the SOI MOSFET body.
Owner:PSEMI CORP

Anti-slide valve power supply control circuit of high speed train

The invention relates to an anti-slide valve power supply control circuit of a high speed train. The anti-slide valve power supply control circuit mainly comprises an isolation optical coupler, an MOSFET (Metal-Oxide-Silicon Field-Effect Transistor), a Darlington transistor, two charging and discharging capacitors, a power supply control relay and necessary resistors. The circuit smartly utilizes the matching of the MOSFET and the Darlington transistor to respectively complete charging and discharging of capacitors so that the relay keeps an electrification state when PWM (Pulse Wavelength Modulation) signals are input. The make-and-break of the MOSFET (Metal-Oxide-Silicon Field-Effect Transistor) and the Darlington transistor is realized through the PWM signals so as to realize charging and discharging of the capacitors in each stage and maintain the control of a driving output relay. When the PWM control signals are in failure, the relay can be quickly cut off, and an anti-slide power supply is reliably cut off under the condition that the anti-slide valve or a driving circuit thereof or the anti-slide valve power supply control circuit is in failure, so that normal work of a braking system is ensured, and the safety and reliability of the braking system and the high speed train are improved.
Owner:NANJING CRRC PUZHEN HAITAI BRAKE EQUIP CO LTD

Starter device for normally off JFETs

A semiconductor switching device or amplifier combined in parallel with one or more active devices defined as starter devices. A starter device is used to reduce the terminal voltage of a switching device or amplifier to a dc level below about 0.4 volts which will then allow the switching device to easily change between the on or conducting state and the off or non-conducting state. Three different starter devices are utilized. The first being a Bipolar Junction Transistor (BJT), the second a Metal Oxide Silicon Field Effect Transistor (MOSFET), and the third consisting of three normally off JFETs connected serially. Generally, a single starter device is coupled across the terminals of a semiconductor switching device or amplifier, but it is possible and sometimes advantageous to couple two or more starter devices in parallel. In a first case, a symmetrical, normally off or enhancement mode JFET is used as the switch or amplifier. A starter device coupled between source and drain of the JFET will allow operation at dc voltage levels above 0.4 volts. In a second case, an asymmetrical, normally off JFET is used as the switch or amplifier. A starter device coupled between source and drain of the JFET will allow operation at dc voltage levels above 0.4 volts. In a third case, a normally off MESFET is used as the switch or amplifier. A starter device coupled between source and drain of the MESFET will allow operation at dc voltage levels above 0.4 volts.
Owner:POWER INTEGRATIONS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products