Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

698 results about "Organ of Zuckerkandl" patented technology

The organ of Zuckerkandl is a chromaffin body derived from neural crest located at the bifurcation of the aorta or at the origin of the inferior mesenteric artery. It can be the source of a paraganglioma.

Tendon-driven endoscope and methods of insertion

A steerable, tendon-driven endoscope is described herein. The endoscope has an elongated body with a manually or selectively steerable distal portion and an automatically controlled, segmented proximal portion. The steerable distal portion and the segment of the controllable portion are actuated by at least two tendons. As the endoscope is advanced, the user maneuvers the distal portion, and a motion controller actuates tendons in the segmented proximal portion so that the proximal portion assumes the selected curve of the selectively steerable distal portion. By this method the selected curves are propagated along the endoscope body so that the endoscope largely conforms to the pathway selected. When the endoscope is withdrawn proximally, the selected curves can propagate distally along the endoscope body. This allows the endoscope to negotiate tortuous curves along a desired path through or around and between organs within the body.
Owner:INTUITIVE SURGICAL OPERATIONS INC

Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve

A device, kit and method may include or employ an implantable device (e.g., annuloplasty implant) and a tool operable to implant such. The implantable device is positionable in a cavity of a bodily organ (e.g., a heart) and operable to constrict a bodily orifice (e.g., a mitral valve). The tissue anchors may be guided into precise position by an intravascularly or percutaneously deployed anchor guide frame of the tool and embedded in an annulus of the orifice. Constriction of the orifice may be accomplished via a variety of structures, for example by cinching a flexible cable or via a anchored annuloplasty ring, the cable or ring attached to the tissue anchors. The annuloplasty ring may be delivered in an unanchored, generally elongated configuration, and implanted in an anchored generally arch, arcuate or annular configuration. Such may approximate the septal and lateral (clinically referred to as anterior and posterior) annulus of the mitral valve, to move the posterior leaflet anteriorly and the anterior leaflet posteriorly, thereby improving leaflet coaptation to eliminate mitral regurgitation.
Owner:KARDIUM

Methods and devices for occluding blood flow to an organ

A method for protecting at least one gonad from a blood borne cytotoxic drug, the method comprising reducing blood flow to at least one gonad of a patient undergoing cytotoxic treatment for an occlusion time interval, and allowing blood flow to the at least one gonad to resume after the occlusion time interval. Optionally the method is performed to protect an ovary during chemotherapy treatment.
Owner:A A CASH TECH

Process for discriminating between biological states based on hidden patterns from biological data

The invention describes a process for determining a biological state through the discovery and analysis of hidden or non-obvious, discriminatory biological data patterns. The biological data can be from health data, clinical data, or from a biological sample, (e.g., a biological sample from a human, e.g., serum, blood, saliva, plasma, nipple aspirants, synovial fluids, cerebrospinal fluids, sweat, urine, fecal matter, tears, bronchial lavage, swabbings, needle aspirantas, semen, vaginal fluids, pre-ejaculate.), etc. which is analyzed to determine the biological state of the donor. The biological state can be a pathologic diagnosis, toxicity state, efficacy of a drug, prognosis of a disease, etc. Specifically, the invention concerns processes that discover hidden discriminatory biological data patterns (e.g., patterns of protein expression in a serum sample that classify the biological state of an organ) that describe biological states.
Owner:ASPIRA WOMENS HEALTH INC +1

Device, system and method for interstitial transvascular intervention

Devices, systems and methods for transvascular interstitial interventions, including transvascular, catheter based vascular bypass, transmyocardial revascularization, bypass grafting of blood vessels, and interstitial surgical / interventional procedures wherein a catheter is advanced translumenally through the vasculature to a desired location and an operative instrument is passed through the wall of a blood vessel and to a target location (e.g. another blood vessel, an organ, a tumor, another anatomical structure) such that one or more operative devices may be advanced to the target location to perform the desired operative or interventional procedure.
Owner:MEDTRONIC VASCULAR INC

System and method for abdominal surface matching using pseudo-features

InactiveUS8781186B2Enhanced informationFacilitates extensive pre-procedural planningImage enhancementImage analysisAbdominal surfaceAbdomen
A system and method for using pre-procedural images for registration for image-guided therapy (IGT), also referred to as image-guided intervention (IGI), in percutaneous surgical application. Pseudo-features and patient abdomen and organ surfaces are used for registration and to establish the relationship needed for guidance. Three-dimensional visualizations of the vasculature, tumor(s), and organs may be generated for enhanced guidance information. The invention facilitates extensive pre-procedural planning, thereby significantly reducing procedural times. It also minimizes the patient exposure to radiation.
Owner:PATHFINDER THERAPEUTICS +1

Simulator for major surgical operations

The invention consists of a hands-on, physically simulated human or animal body interior, containing physically simulated representations of all of the solid organs, hollow viscera, bladders, glands, major ducts, large and medium-sized blood vessels, muscle groups and interstitial tissues. The organs and vessels are life-sized and are composed of molded or sculpted open cell or closed cell foam rubber of varying density and load deformation, matching the physical properties of the specific biologic organs or tissues simulated. The organs, tissues and vessels may be treated with pigments, sealants and / or hardening agents to reflect the contours, appearances, densities, textures, elasticity, and deformability of normal or pathologically-altered internal organs and tissues. Organs contain molded vascular channels, reversibly attached to the larger blood vessels of the simulator. The model has a pressurized, watertight, simulated vascular system, monitored by electronic sensors.
Owner:OPERATIVE EXPERIENCE

Adjusting acquisition protocols for dynamic medical imaging using dynamic models

ActiveUS20100183206A1More standardizedBetter quantifiableImage enhancementImage analysisDynamic modelsHemodynamics
The invention relates to automatically adjusting an acquisition protocol for dynamic medical imaging, such as dynamic CT, MRI or PET imaging. The protocols are adjusted based on anatomic and dynamic models (10, 12, 14) which are individualized or fitted to each patient based on a scout scan (6, 8). The adjustment can compensate for changes in the patient due to patient motion (e.g. breathing or heartbeat) or flow of contrast or tracing agent during the sequence. This ensures that changes in the reconstructed images are indicative of pathological changes in the patient and not caused by patient motion or changes in scanning parameters or timing. The dynamic model can be a motion model (12) used to predict the motion of anatomic / physiologic features, typically organs, during scanning, or a haemodynamic model (14) used to predict flow of the contrast agent allowing for precise timing of the scanning sequence.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Medical image reporting system and method

This invention relates generally to medical imaging and, in particular, to a method and system for reconstructing a model path through a branched tubular organ. Novel methodologies and systems segment and define accurate endoluminal surfaces in airway trees, including small peripheral bronchi. An automatic algorithm is described that searches the entire lung volume for airway branches and poses airway-tree segmentation as a global graph-theoretic optimization problem. A suite of interactive segmentation tools for cleaning and extending critical areas of the automatically segmented result is disclosed. A model path is reconstructed through the airway tree.
Owner:PENN STATE RES FOUND

Method for automated analysis of apical four-chamber images of the heart

InactiveUS6708055B2Maximizes long axis lengthImage enhancementImage analysisBody organsCardiac muscle
A method for quantitatively analyzing digital images of approximately elliptical body organs, and in particular, echocardiographic images is provided. In particular, methods are disclosed for obtaining short-axis apical four-chamber views of a heart, and particularly for obtaining high-quality automated images of particular regions of the heart muscle, as viewed along its long axis.
Owner:FLORIDA UNIV OF A FLORIDA

Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ

An overtube for use with an endoscopic surgical instrument. In various embodiments, the overtube may comprise a hollow tubular member that has an implantable tip detachably affixed to a distal end thereof. The implantable tip may have at least one retention member formed thereon to retain the tip within an organ wall. The implantable tip may further have a lumen extending therethrough to form a passageway through the organ wall. A plug member may be provided to selectively seal off the lumen within the implantable tip.
Owner:ETHICON ENDO SURGERY INC

Method for multi-scale meshing of branching biological structures

A structural and functional model for a lung or similar organ is virtually defined by encoding aspects of branching passageways. Larger passageways that are visible in medical images are surface mesh fitted to the anatomical surface geometry. Smaller distal passageways, beyond a given number of branch generations, are modeled by inference as linear passages with nominal diameters and branching characteristics, virtually filling the space within the outer envelope of the organ. The model encodes finite volumetric elements for elasticity and compliance in passageway walls, and for local pressure and flow conditions in passageway lumens during respiration. The modeling can assess organ performance, help to plan surgery or therapy, determine likely particle deposition, assess respiratory pharmaceutical dosing, and otherwise represent structural and functional organ parameters.
Owner:UNIV OF IOWA RES FOUND +1

Method for automated analysis of apical four-chamber images of the heart

A method for quantitatively analyzing digital images of approximately elliptical body organs, and in particular, echocardiographic images is provided. In particular, methods are disclosed for obtaining short-axis apical four-chamber views of a heart, and particularly for obtaining high-quality automated images of particular regions of the heart muscle, as viewed along its long axis.
Owner:FLORIDA UNIV OF A FLORIDA

Medical device for constricting tissue or a bodily orifice, for example a mitral valve

A medical apparatus positionable in a cavity of a bodily organ (e.g., a heart) may constrict a bodily orifice (e.g., a mitral valve). The medical apparatus may include tissue anchors that are implanted in the annulus of the orifice. The tissue anchors may be guided into position by an intravascularly or percutaneously deployed anchor guiding frame. Constriction of the orifice may be accomplished by cinching a flexible cable attached to implanted tissue anchors. The medical device may be used to approximate the septal and lateral (clinically referred to as anterior and posterior) annulus of the mitral valve in order to move the posterior leaflet anteriorly and the anterior leaflet posteriorly and thereby improve leaflet coaptation and eliminate mitral regurgitation.
Owner:KARDIUM

Ex vivo organ care system

ActiveUS20150342177A1Reducing ischemia and other reperfusion related injuryAccurately mimicking blood flowDead animal preservationEnzymology/microbiology apparatusEx vivoOrgan of Zuckerkandl
The invention generally relates to systems, methods, and devices for ex vivo organ care. More particularly, in various embodiments, the invention relates to caring for a liver ex vivo at physiologic or near-physiologic conditions.
Owner:TRANSMEDICS

Method for lung lesion location identification

A method and a system are disclosed for labeling an anatomical point associated with a lesion in an organ such as a lung. The method includes: a segmentation of a vessel tree anatomical structure starting from an autonomously determined initial image point; labeling the vessel segments of the vessel tree segmentation with segment labels based on a priori anatomical knowledge, thereby creating an individualized anatomical model; receiving a user-specified image point having a location from a user and locating a nearby vessel structure; tracking along the vessel structure in a direction towards a root of a parent vessel tree until a prior labeled vessel segment is encountered in the anatomical model, and assigning the label of the encountered prior labeled vessel segment from the anatomical model as an anatomical location label of the user-specified image point.
Owner:CARESTREAM HEALTH INC

Method and System for Hierarchical Parsing and Semantic Navigation of Full Body Computed Tomography Data

ActiveUS20100080434A1Facilitate semantic navigationEasy to mergeImage enhancementImage analysisWhole bodyKidney
A method and apparatus for hierarchical parsing and semantic navigation of a full or partial body computed tomography CT scan is disclosed. In particular, organs are segmented and anatomic landmarks are detected in a full or partial body CT volume. One or more predetermined slices of the CT volume are detected. A plurality of anatomic landmarks and organ centers are then detected in the CT volume using a discriminative anatomical network, each detected in a portion of the CT volume constrained by at least one of the detected slices. A plurality of organs, such as heart, liver, kidneys, spleen, bladder, and prostate, are detected in a sense of a bounding box and segmented in the CT volume, detection of each organ bounding box constrained by the detected organ centers and anatomic landmarks. Organ segmentation is via a database-guided segmentation method.
Owner:SIEMENS HEALTHCARE GMBH

Patient-Specific Segmentation, Analysis, and Modeling from 3-Dimensional Ultrasound Image Data

Methods and systems to analyze and predict patient-specific physiological behavior of a human organ or anatomical entity such as the heart complex and the heart subcomponents from 3-dimensional volumetric ultrasound (3D) or time-sequential volumetric (4D) ultrasound image data, to assist physicians in performing diagnostics and cardiac preoperative planning. Also disclosed herein are methods and systems to segment patient-specific anatomical features from 3D / 4D ultrasound. Also disclosed herein are methods and systems to compute patient-specific tissue motion and blood flow from 3D / 4D ultrasound and contrast-enhanced 3D / 4D ultrasound image data. Also disclosed herein are methods and systems to simulate the patient-specific mechanical behavior of the organ and anatomical entity using both 3D / 4D ultrasound and mechanical models. Also disclosed herein are methods and systems to estimate tissue stress and strain and physiological parameters of the tissues from 3D / 4D ultrasound.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE

Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve

A device, kit and method may employ an implantable device (e.g., annuloplasty implant) and a tool to implant such. The implantable device is positionable in a cavity of a bodily organ (e.g., a heart) and operable to constrict a bodily orifice (e.g., a mitral valve). Tissue anchors are guided into precise position by an intravascularly deployed anchor guide frame and embedded in an annulus. Constriction of the orifice may be accomplished via a variety of structures, for example by cinching a flexible cable or anchored annuloplasty ring, the cable or ring attached to the tissue anchors. The annuloplasty ring may be delivered in a generally elongated configuration, and implanted in an anchored generally arch, arcuate or annular configuration. Such may move a posterior leaflet anteriorly and an anterior leaflet posteriorly, improving leaflet coaptation to eliminate mitral regurgitation.
Owner:KARDIUM

Chronic Rejection Inhibitor

ActiveUS20100061986A1Suppressing chronic rejection reactionAvoid spreadingAntibody ingredientsImmunoglobulinsHeart transplantationStenotic lesion
The present inventors assessed the effect of anti-IL-6 receptor antibodies in suppressing chronic rejection reaction. They assessed the effect of anti-mouse IL-6 receptor antibody (MR16-1) administration in suppressing the chronic rejection reaction using a mouse model for post-heart-transplantation chronic rejection. The result of histopathological analysis of transplanted hearts extirpated 60 days after transplantation revealed that fibrosis of myocardium and vascular stenotic lesions, which are pathological conditions characteristic of the chronic rejection reaction, were significantly suppressed in the MR16-1-treated group as compared to the control group. Thus, MR16-1 administration was demonstrated to have the effect of suppressing chronic rejection reaction. Specifically, the present inventors discovered for the first time that the rejection reaction in the chronic phase after organ transplantation was suppressed by administering an anti-IL-6 receptor antibody.
Owner:CHUGAI PHARMA CO LTD +1

Method for maintaining and/or restoring viability of organs

An organ perfusion apparatus and method monitor, sustain and / or restore viability of organs and preserve organs for storage and / or transport. The method includes perfusing the organ at hypothermic and / or normothermic temperatures, preferably after hypothermic organ flushing for organ transport and / or storage. The method can be practiced with prior or subsequent static or perfusion hypothermic exposure of the organ. Organ viability is restored by restoring high energy nucleotide (e.g., ATP) levels by perfusing the organ with a medical fluid, such as an oxygenated cross-linked hemoglobin-based bicarbonate medical fluid, at normothermic temperatures. In perfusion, organ perfusion pressure is preferably controlled in response to a sensor disposed in an end of tubing placed in the organ, by a pneumatically pressurized medical fluid reservoir, providing perfusion pressure fine tuning, overpressurization prevention and emergency flow cut-off. In the hypothermic mode, the organ is perfused with a medical fluid, preferably a simple crystalloid solution containing antioxidants, intermittently or in slow continuous flow. The medical fluid may be fed into the organ from an intermediary tank having a low pressure head to avoid organ overpressurization. Preventing overpressurization prevents or reduces damage to vascular endothelial lining and to organ tissue in general. Viability of the organ may be automatically monitored, preferably by monitoring characteristics of the medical fluid perfusate. The perfusion process can be automatically controlled using a control program.
Owner:LIFELINE SCI

Method for the early detection of pancreatic cancer and other gastrointestinal disease conditions

InactiveUS20080248484A1Early diagnosisSpecific and focused early diagnosisMicrobiological testing/measurementOrgan systemNeoplasm
The present invention uses peripheral blood monocyte-lymphocyte for the early diagnosis of pancreatic cancer, as well as other conditions of the pancreas and other organs. The peripheral blood lymphocytes recognize the new neoplasm in the pancreas, as well as disease processes in other organ systems. The evaluation of this specific recognition of the disease process by the peripheral blood monocyte-lymphocyte through gene microarray expression patterns constitute a successful method for the early detection of pancreatic cancer and other organ disease processes. This document describes the process used in this method of early diagnosis.
Owner:BAUER A ROBERT

Vasodilator-enhanced cardiopulmonary resuscitation

InactiveUS20120203147A1Increase blood flowImprove artificial circulationBiocideHeavy metal active ingredientsImpedance threshold deviceVascular dilatation
A method for increasing blood flow to vital organs during cardiopulmonary resuscitation of a person experiencing a cardiac arrest may include performing standard or active compression decompression cardiopulmonary resuscitation on a person to create artificial circulation by repetitively compressing the person's chest such that the person's chest is subject to a compression phase and a relaxation or decompression phase. The method may also include administering one or more vasodilator drugs to the person to improve the artificial circulation created by the cardiopulmonary resuscitation. The method may also include binding at least a portion of the person's abdomen, either manually or with an abdominal compression device. Performing cardiopulmonary resuscitation on a person may include ventilating the person with either an impedance threshold device or a intrathoracic pressure regulator.
Owner:ZOLL MEDICAL CORPORATION

Minimally invasive cardiovascular support system with true haptic coupling

A family of minimally-invasive surgical (MIS) cardiac interventional tools with tactile feedback based upon cardiac mechanical data and physiologic parameters derived from sensors positioned upon the tools are configurable for optimal placement of an end-effector to provide acute cardiac resuscitation and / or remote cardiovascular intervention for a subject. A haptic interface (e.g., a haptic handle, haptic glove or a simulated haptic heart) provides a clinician with real, not virtual, interaction with the cardiovascular anatomy (including intrathoracic organs) of the subject to optimize end-effector placement. The MIS tools optionally include webbed blade portions for exploration of extracardiac or intrathoracic spaces. The blade portions are initially collapsed but expand into an array of finger-like projections that function as sensors, dilatation and / or dissection tools, pharmacological delivery tools, and / or electrodes for sensing, pacing and defibrillation, and / or as a manual, semi-automatic or fully automatic mechanical support system for cardiac resuscitation and / or for restoring intrathoracic organ function(s).
Owner:STUART SCHECTER LLC

Treatment Of Sepsis Using Complement Inhibitors

Methods for the treatment of sepsis with complement inhibitors are disclosed. In particular, C3 inhibitors, such as Compstatin and Compstatin analogs, are administered at various times following the onset of sepsis to alleviate tissue damage and organ failure, which are hallmarks of the second, extravascular stage of sepsis. Combination therapies for comprehensive treatment of sepsis are also disclosed. Pharmaceutical compositions and kits for use in the methods are disclosed as well.
Owner:OKLAHOMA MEDICAL RES FOUND +2

Systems for monitoring and applying electrical currents in an organ perfusion system

Electrode systems have been developed for use in perfusion systems to measure the electrical activity of an explanted heart and to provide defibrillation energy as necessary. The perfusion systems maintain the heart in a beating state at, or near, normal physiological conditions; circulating oxygenated, nutrient enriched perfusion fluid to the heart at or near physiological temperature, pressure and flow rate. These systems include a pair of electrodes that are placed epicardially on the right atrium and left ventricle of the explanted heart, as well as an electrode placed in the aortic blood path.
Owner:TRANSMEDICS

Treatment of aggressive non-Hodgkins lymphoma with anti-CD20 antibody

This invention concerns methods for the treatment of intermediate and high-grade non-Hodgkins lymphomas, comprising the administration of anti-CD20 monoclonal antibodies and fragments thereof. Particular embodiments include the administration of chimeric anti-CD20 antibody, either alone or in combination with radiolabeled antibodies or chemotherapy. The invention is particularly useful for lymphomas characterized by a high number of circulating B cells, possibly bone marrow involvement, bulky disease, or the involvement of extralymphatic organs or sites.
Owner:BIOGEN INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products