Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

31results about How to "Reduce leakage conductance" patented technology

Layer-by-layer alternatively doped low-leakage-current BiFeO3 film and preparation method thereof

The invention discloses a layer-by-layer alternatively doped low-leakage-current BiFeO3 film and a preparation method thereof. The preparation method comprises the steps of dissolving bismuth nitrate, ferric nitrate and nitric acid into mixed liquid of ethylene glycol monomethyl ether and acetic anhydride so as to obtain a precursor solution A; dissolving bismuth nitrate, ferric nitrate and samarium nitrate in mixed liquid of ethylene glycol monomethyl ether and acetic anhydride so as to obtain a precursor solution B; coating the precursor solution A on a FTO/glass substrate by way of spin coating, baking and annealing the FTO/glass substrate so as to obtain a Tb doped crystalline BiFeO3 film, coating the precursor solution B on the Tb doped crystalline BiFeO3 film by way of spin coating, baking and annealing the Tb doped crystalline BiFeO3 film so as to obtain a Sm doped crystalline BiFeO3 film, and alternatively preparing the Tb doped crystalline BiFeO3 film and the Sm doped crystalline BiFeO3 film on the Sm doped crystalline BiFeO3 film so as to obtain the layer-by-layer alternatively doped low-leakage-current BiFeO3 film. The method disclosed by the invention adopts a sol-gel process, and is simple in equipment requirements and suitable for preparing films on large surfaces and irregularly-shaped surfaces, and chemical components are precise and controllable.
Owner:盐城市鹤业实业投资有限公司

Bi0.90Dy0.10Fe1-XMnxO3 ferroelectric film with high dielectric constant, and preparation method for Bi0.90Dy0.10Fe1-XMnxO3 ferroelectric film with high dielectric constant

The invention provides a Bi0.90Dy0.10Fe1-XMnxO3 ferroelectric film with a high dielectric constant, and a preparation method for the Bi0.90Dy0.10Fe1-XMnxO3 ferroelectric film with the high dielectric constant. The film adopts a rhombohedral structure and has high homogeneity, the remanent polarization ranges from 59.3 [mu]C / cm<2> to 95.2 [mu]C / cm<2>, the coercive field ranges from 280 kV / cm to 368 kV / cm, and the high dielectric constant ranges from 239.2 to 348.57. The preparation method includes the following steps: bismuth nitrate, ferric nitrate, dysprosium nitrate and manganese acetate are dissolved in a mixed liquor of ethylene glycol monomethyl ether and acetic anhydride, so as to obtain a precursor; a substrate is spin-coated with the precursor; glue evening and baking are carried out in sequence to obtain a dry film; the dry film is annealed to obtain a Bi0.90Dy0.10Fe1-XMnxO3 film; the procedures of precursor spin-coating, baking and annealing are repeated until a required film thickness is reached, so that the film is obtained. The ferroelectric film has the advantages of simple equipment requirements and high controllability of the doping amount; the dielectric properties of a BiFeO3 (bismuth ferrite) film can be greatly improved.
Owner:SHAANXI UNIV OF SCI & TECH

A kind of bifeo3 thin film with ternary co-doping of tb, cr and mn with high remnant polarization and its preparation method

The invention discloses a Tb, Cr and Mn ternary co-doped high-remanent-polarization BiFeO3 film and a preparation method thereof. The preparation method comprises the following steps: dissolving bismuth nitrate, ferric nitrate, terbium nitrate, chromic nitrate and manganese acetate according to a molar ratio of (0.91-0.97):(0.98-x):(0.08-0.14):0.02:x in a mixed solution of ethylene glycol monomethyl ether and acetic anhydride and uniformly stirring, thus obtaining a BiFeO3 precursor solution, wherein the total metal ion concentration in the BiFeO3 precursor solution is 0.1-0.5mol / L, and x is equal to 0.01 to 0.04; spin coating the BiFeO3 precursor solution on an FTO / glass substrate to prepare a wet film, baking the wet film to obtain a dried film, annealing at the temperature of 550 DEG C for 8-13 minutes, thus obtaining a crystalline-state BiFeO3 film; and after the crystalline-state BiFeO3 film is cooled, repeating the operations until the BiFeO3 film reaches the needed thickness, thus obtaining the Tb, Cr and Mn ternary co-doped high-remanent-polarization BiFeO3 film. According to the method, a sol-gel process is adopted, the equipment requirement is simple, the method is suitable for preparing films on large surfaces and out-of-shape surfaces, the chemical constituents are accurately controlled, and the crystal structure is regulated through co-doping, so that the ferroelectric properties of the film are greatly improved.
Owner:SHAANXI UNIV OF SCI & TECH

Tb, Cr and Mn ternary co-doped high-remanent-polarization BiFeO3 film and preparation method thereof

The invention discloses a Tb, Cr and Mn ternary co-doped high-remanent-polarization BiFeO3 film and a preparation method thereof. The preparation method comprises the following steps: dissolving bismuth nitrate, ferric nitrate, terbium nitrate, chromic nitrate and manganese acetate according to a molar ratio of (0.91-0.97):(0.98-x):(0.08-0.14):0.02:x in a mixed solution of ethylene glycol monomethyl ether and acetic anhydride and uniformly stirring, thus obtaining a BiFeO3 precursor solution, wherein the total metal ion concentration in the BiFeO3 precursor solution is 0.1-0.5mol / L, and x is equal to 0.01 to 0.04; spin coating the BiFeO3 precursor solution on an FTO / glass substrate to prepare a wet film, baking the wet film to obtain a dried film, annealing at the temperature of 550 DEG C for 8-13 minutes, thus obtaining a crystalline-state BiFeO3 film; and after the crystalline-state BiFeO3 film is cooled, repeating the operations until the BiFeO3 film reaches the needed thickness, thus obtaining the Tb, Cr and Mn ternary co-doped high-remanent-polarization BiFeO3 film. According to the method, a sol-gel process is adopted, the equipment requirement is simple, the method is suitable for preparing films on large surfaces and out-of-shape surfaces, the chemical constituents are accurately controlled, and the crystal structure is regulated through co-doping, so that the ferroelectric properties of the film are greatly improved.
Owner:SHAANXI UNIV OF SCI & TECH

Layer-by-layer alternatively doped low-leakage-current BiFeO3 film and preparation method thereof

The invention discloses a layer-by-layer alternatively doped low-leakage-current BiFeO3 film and a preparation method thereof. The preparation method comprises the steps of dissolving bismuth nitrate, ferric nitrate and nitric acid into mixed liquid of ethylene glycol monomethyl ether and acetic anhydride so as to obtain a precursor solution A; dissolving bismuth nitrate, ferric nitrate and samarium nitrate in mixed liquid of ethylene glycol monomethyl ether and acetic anhydride so as to obtain a precursor solution B; coating the precursor solution A on a FTO / glass substrate by way of spin coating, baking and annealing the FTO / glass substrate so as to obtain a Tb doped crystalline BiFeO3 film, coating the precursor solution B on the Tb doped crystalline BiFeO3 film by way of spin coating, baking and annealing the Tb doped crystalline BiFeO3 film so as to obtain a Sm doped crystalline BiFeO3 film, and alternatively preparing the Tb doped crystalline BiFeO3 film and the Sm doped crystalline BiFeO3 film on the Sm doped crystalline BiFeO3 film so as to obtain the layer-by-layer alternatively doped low-leakage-current BiFeO3 film. The method disclosed by the invention adopts a sol-gel process, and is simple in equipment requirements and suitable for preparing films on large surfaces and irregularly-shaped surfaces, and chemical components are precise and controllable.
Owner:盐城市鹤业实业投资有限公司

Bi0.90Dy0.10Fe1-XMnxO3 ferroelectric film with high dielectric constant, and preparation method for Bi0.90Dy0.10Fe1-XMnxO3 ferroelectric film with high dielectric constant

The invention provides a Bi0.90Dy0.10Fe1-XMnxO3 ferroelectric film with a high dielectric constant, and a preparation method for the Bi0.90Dy0.10Fe1-XMnxO3 ferroelectric film with the high dielectric constant. The film adopts a rhombohedral structure and has high homogeneity, the remanent polarization ranges from 59.3 [mu]C / cm<2> to 95.2 [mu]C / cm<2>, the coercive field ranges from 280 kV / cm to 368 kV / cm, and the high dielectric constant ranges from 239.2 to 348.57. The preparation method includes the following steps: bismuth nitrate, ferric nitrate, dysprosium nitrate and manganese acetate are dissolved in a mixed liquor of ethylene glycol monomethyl ether and acetic anhydride, so as to obtain a precursor; a substrate is spin-coated with the precursor; glue evening and baking are carried out in sequence to obtain a dry film; the dry film is annealed to obtain a Bi0.90Dy0.10Fe1-XMnxO3 film; the procedures of precursor spin-coating, baking and annealing are repeated until a required film thickness is reached, so that the film is obtained. The ferroelectric film has the advantages of simple equipment requirements and high controllability of the doping amount; the dielectric properties of a BiFeO3 (bismuth ferrite) film can be greatly improved.
Owner:SHAANXI UNIV OF SCI & TECH

Tb, Mn and Ni ternary co-doped low leakage current BiFeO3 film and preparation method thereof

The invention discloses a Tb, Mn and Ni ternary co-doped low leakage current BiFeO3 film and a preparation method thereof. The preparation method of the Tb, Mn and Ni ternary co-doped low leakage current BiFeO3 film comprises the following steps: dissolving bismuth nitrate, ferric nitrate, terbium nitrate, manganese acetate and nickel acetate in a molar ratio of (0.91-0.97): (0.96-x): (0.08-0.14): 0.04:x in mixed liquor formed by mixing ethylene glycol methyl ether and acetic anhydride, then uniformly stirring to obtain BiFeO3 precursor liquor, wherein x is equal to 0.01-0.02; coating the BiFeO3 precursor liquor on an FTO (Fluorine-doped Tin Oxide) / glass substrate in a rotary manner to prepare a wet film, roasting the wet film to obtain a dry film, then, annealing for 8 minutes-13 minutes at 550 DEG C to obtain a crystalline-state BiFeO3 film; after the crystalline-state BiFeO3 film is cooled, repeating the annealing, so that the crystalline-state BiFeO3 film reaches needed thickness to obtain the Tb, Mn and Ni ternary co-doped low leakage current BiFeO3 film. The preparation method disclosed by the invention is simple in device requirement, suitable for preparing the film on a large surface and the surface with an irregular shape; moreover, chemical components are precise and controllable, electrical performance of the film can be improved, leakage current density of the BiFeO3 under 350 kV / cm test electric fields is kept below 10<-5>A / cm<2>, and dielectric constant under test frequency of 100 kHz is 240-270.
Owner:盐城市鹤业实业投资有限公司

A kind of tb and mn co-doped bifeo3 thin film with high remnant polarization and its preparation method

The invention relates to a Tb and Mn codoped high remanent polarization BiFeO3 film and a preparation method, the method comprises the following steps: dissolving bismuth nitrate, ferric nitrate, terbium nitrate and manganese acetate according to mol ratio of (0.91-0.97): (1-x): (0.08-0.14): x in a mixed liquor of ethylene glycol monomethyl ether and acetic anhydride, then uniformly stirring to obtain a BiFeO3 precursor liquid; X is 0.01-0.05; performing spin coating of the BiFeO3 precursor liquid on a FTO / glass substrate to prepare a wet membrane, baking the wet membrane to obtain a dry membrane, then annealing at 550 DEG C to obtain the crystalline state BiFeO3 film; cooling the crystalline state BiFeO3 film, and repeatedly making the crystalline state BiFeO3 film to reach a required thickness to obtain the Tb and Mn codoped high remanent polarization BiFeO3 film. According to the invention, a sol gel technology is employed, the equipment requirement is simple, the film is prepared on a large surface and surfaces with irregular shapes, the chemical component is accurate and controllable, and the ferroelectric performance of the film is greatly increased, and the saturation remanent polarization of the Tb and Mn codoped BiFeO3 film can be increased to more than 100 mumC / cm<2>.
Owner:盐城市鹤业实业投资有限公司

A kind of tb, mn and cu ternary co-doped bifeo3 film with low leakage current and preparation method thereof

The invention relates to a Tb, Mn and Cu three-element codoped low leakage current BiFeO3 film and a preparation method. the method comprises the following steps: dissolving bismuth nitrate, ferric nitrate, terbium nitrate, manganese acetate and cupric nitrate according to mol ratio of (0.91-0.97): (0.96-x): (0.08-0.14): 0.04: x in a mixed liquor of ethylene glycol monomethyl ether and acetic anhydride, then uniformly stirring to obtain a BiFeO3 precursor; wherein total metal ion concentration of the BiFeO3 precursor is 0.1-0.5mol / L, X is 0.01-0.03; performing spin coating of the BiFeO3 precursor on a FTO / glass substrate to prepare a wet membrane, baking the wet membrane to obtain a dry membrane, then annealing at 550 DEG C for 8-13 minutes to obtain the crystalline state BiFeO3 film, cooling the crystalline state BiFeO3 film, and repeatedly making the crystalline state BiFeO3 film to reach a required thickness to obtain the Tb, Mn and Cu three-element codoped low leakage current BiFeO3 film. According to the invention, a sol gel technology is employed, the equipment requirement is simple, the film is prepared on large surface and surfaces with irregular shapes, the chemical component is accurate and controllable, and the regulation and control to its crystal structure can be carried out by codoping thereby the ferroelectric performance of the film is greatly increased.
Owner:SHAANXI UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products