Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

132results about How to "Reliable value" patented technology

Method for determining the resistance of the respiratory system of a patient

A method for automatically determining the resistance of the respiratory system of a spontaneously breathing intubated patient. The method includes measuring flow (V′) and airway pressure (Paw) as a function of time; determining the airway pressure at the end of the occlusion period as end of occlusion airway pressure Paw(tc)=Poccl; analyzing a time dependence of the flow starting at the end of the occlusion period to determine a transition time td at which the slope of the flow changes from a first high value to a second lower value, and/or analyzing a time dependence of the airway pressure starting at the end of the occlusion period to determine a transition time td at which the slope at the airway pressure changes from a first high value to a second lower value, or by detecting an increase of the airway pressure over a predetermined threshold value to determine the transition time td; determining the flow at the transition time as transition time flow V′(td)=V′peak and determining the airway pressure at the transition time as transition time pressure Paw(td); and calculating the resistance on the basis of the ratio of an estimated driving pressure at the transition time Pdrv(td) and the transition time flow V′peak, wherein the value of the transition time driving pressure Pdrv(td) is calculated as sum of the transition time airway pressure Paw(td) and the muscular effort Pmus(td) at the transition time, which muscular effort Pmus(td) is extrapolated based on a predetermined time dependence of Pmus(t) during the occlusion period and based on value of the end of occlusion airway pressure Poccl.
Owner:DRAGERWERK AG

Systematic and random error detection and recovery within processing stages of an integrated circuit

An integrated circuit includes a plurality of processing stages each including processing logic 1014, a non-delayed signal-capture element 1016, a delayed signal-capture element 1018 and a comparator 1024. The non-delayed signal-capture element 1016 captures an output from the processing logic 1014 at a non-delayed capture time. At a later delayed capture time, the delayed signal-capture element 1018 also captures a value from the processing logic 1014. An error detection circuit 1026 and error correction circuit 1028 detect and correct random errors in the delayed value and supplies an error-checked delayed value to the comparator 1024. The comparator 1024 compares the error-checked delayed value and the non-delayed value and if they are not equal this indicates that the non-delayed value was captured too soon and should be replaced by the error-checked delayed value. The non-delayed value is passed to the subsequent processing stage immediately following its capture and accordingly error recovery mechanisms are used to suppress the erroneous processing which has occurred by the subsequent processing stages, such as gating the clock and allowing the correct signal values to propagate through the subsequent processing logic before restarting the clock. The operating parameters of the integrated circuit, such as the clock frequency, the operating voltage, the body biased voltage, temperature and the like are adjusted so as to maintain a finite non-zero error rate in a manner that increases overall performance.
Owner:ARM LTD +1

Evaluation method of composition segregation of low-carbon high-manganese steel continuous casting small square billet

The invention discloses an evaluation method of composition segregation of low-carbon high-manganese steel continuous casting small square billet and belongs to the technical field of continuous casting billet detection. Segregation characteristics are analyzed by utilizing the characteristic that an Mn element in the low-carbon high-manganese steel continuous casting small square billet is easy to form interdendritic enrichment and segregation, and the composition segregation of the continuous casting billet is quantitatively evaluated by utilizing an electron probe. The evaluation method comprises the specific steps of: determining the Mn element as an analysis object, scanning a casting billet sample by utilizing the electron probe to obtain a composition distribution diagram of the Mn element, carrying out line scanning on the composition diagram to extract Mn content data, carrying out deviation analysis on the obtained Mn content data, and comparing and evaluating the segregation degree of the continuous casting small square billet by calculating the size of standard deviation. The evaluation method can be used for expressing the composition segregation of the casting billet by using a curve and quantitatively evaluating the composition segregation by using the standard deviation, and has the advantages that the sample preparation is easy, the results are accurate, and the detection time and cost are reduced.
Owner:SHOUGANG CORPORATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products