Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

46 results about "Electrical integrity" patented technology

Method and morphologically adaptable apparatus for altering the charge distribution upon living membranes with functional stabilization of the membrane physical electrical integrity

A method and morphologically adaptable apparatus for altering the charge distribution upon living membranes with functional stabilization of the membrane physical electrical integrity further comprising a method for using quadripolar, circular, center charged, energy balanced magnetic device in a four (4) magnet array of alternating polarity in which the magnetic poles are in multiple planes and are separated by a predetermined distance which provide an effective magnetic sphere of influence on all adjacent poles to suppress the firing of action potentials of mammalian sensory neurons. The method and apparatus further provides a static magnetic device for production of a magnetic field for treatment of various disorders that can be focused at the site of pain or edema to deliver a gradient in the magnetic field to prevent or reduce charge flow. Further there is provided a static magnetic device for production of a magnetic field for treatment of disorders wherein the device provides a static magnetic field such that the focused magnetic field gradient is oriented To be perpendicular to the neuron or membrane charge flow providing maximum deflection of the ion or charge flow.
Owner:GRADIENT TECH

Method and materials for bonding electrodes to interconnect layers in solid oxide fuel cell stacks

A method and related bonding compositions for use in assembling a solid oxide fuel cell (“SOFC”) stack having thermally and chemically stable and electrically conductive bonds between alternating fuel cells and interconnect components in the stack. The improved method and materials allow for the assembly of solid oxide fuel cells having a stronger and more reliable bond with good electrical contact in situ between the SOFC interconnect layers (plates) and the electrodes. The bonding materials and method according to the invention provide good electrical performance while maintaining the mechanical and electrical integrity of SOFC stacks without requiring excessive mechanical compression of the stack as exemplified by prior art systems. The preferred bonding agents comprise a primary phase that provides the electrical conduction path during fuel cell operation, as well as the mechanical strength necessary to insure a reliable connection between the interconnect and the relevant anode or cathode surfaces of the fuel cell. Secondary phases can be added in small amounts to the primary phase to improve adhesion. An exemplary method according to the invention also contemplates various different steps for pre-treating the surfaces of the interconnect plates and electrodes to improve their surface bonding properties.
Owner:CUMMINS ENTERPRISE LLC

Formulation and fabrication of an improved Ni based composite Ohmic contact to n-SiC for high temperature and high power device applications

A composite Pt / Ti / WSi / Ni Ohmic contact has been fabricated by a physical deposition process which uses electron beam evaporation and dc-sputter deposition. The Ni based composite Ohmic contact on n-SiC is rapid thermally annealed (RTA) at 950° C. to 1000° C. for 30s to provide excellent current-voltage characteristics, an abrupt, void free contact-SiC interface, retention of the as-deposited contact layer width, smooth surface morphology and an absence of residual carbon within the contact layer and / or at the Ohmic contact-SiC interface. The annealed produced Ni2Si interfacial phase is responsible for the superior electrical integrity of the Ohmic contact to n-SiC. The effects of contact delamination due to stress associated with interfacial voiding has been eliminated. Wire bonding failure, non-uniform current flow and SiC polytype alteration due to extreme surface roughness have also been abolished. The Ohmic contact also avoids electrical instability associated with carbon inclusions within the contact metallization and / or at the contact-SiC interface, that occur under prolonged high temperature and power device operations. Overall, this contact is reliable for high temperature and high power operations and the stresses inclusive of use under those conditions.
Owner:UNITED STATES OF AMERICA THE AS REPRESENTED BY THE SEC OF THE ARMY

System and methods for connecting electrical components

The present disclosure is directed to methods and devices that use a contact interface for establishing an electrical connection with an electrical component. In certain exemplary embodiments, the contact interface of a device includes at least one loading fiber and at least one conductor having at least one contact point. The conductor(s) is coupled to a loading fiber so that an electrical connection can be established between the contact point(s) of the conductor(s) and the electrical component when the device is engaged with the electrical component. In certain exemplary embodiments, a conductor is woven with, or wound around, a loading fiber. In some exemplary embodiments, the conductor is comprised of a shaped contact and a conductive lead. The present disclosure is also directed to methods and devices for testing the electrical integrity or functionality of an electrical component. In certain exemplary embodiments, the device includes a plurality of loading fibers, a plurality of conductors and a plurality of tensioning guides. Each conductor can be coupled to at least one loading fiber. The tensioning guides can be disposed on at least one side of each said conductor. In such embodiments, electrical connections can be established between at least a portion of the plurality of conductors and the electrical component when the device is engaged with the electrical component. At least a portion of the plurality of loading fibers may come into contact with the plurality of tensioning guides when the device is engaged with the electrical component. In one exemplary embodiment, the device comprises a burn-in socket device. In another exemplary embodiment, the device comprises a test socket device.
Owner:METHODE ELETRONICS INC

Structure and method for wire bond integrity check on BGA substrates using indirect electrical interconnectivity pathway between wire bonds and ground

An invention providing improvement in integrity testing of wire bonds between an IC die and a BGA substrate.The invention includes a BGA integrated circuit package comprising:1) a BGA substrate having conducting bond fingers and a grounded feature on a first side thereof; 2) an IC die electrically connected to the conducting bond fingers with wire bonds; the BGA substrate configured to be formed into a singulated unit with the IC die; wherein the BGA substrate does not have direct electrical connection on the first side thereof between the bond fingers and the grounded feature; 4) the BGA substrate including an indirect electrical connection pathway from each wire bond to the grounded feature that enables electrical integrity testing for the wire bonds; the indirect electrical connection pathway configured so that at least a portion of each indirect electrical connection pathway is not present on the singulated unit.The invention further includes a method for bonding an integrated circuit (IC) die to a BGA substrate, said BGA substrate configured to be formed into a singulated unit with said IC die, said method including testing electrical integrity of a wire bond between a) a bond finger on a first side of said BGA substrate and b) a bonding pad on said IC die, wherein said substrate does not have direct electrical connections on said first side between said bond fingers and a grounded feature on said first side; the method comprising the steps of:applying a voltage through said wire bond on said BGA substrate to said grounded feature, through an indirect electrical connection pathway at least a portion of which is not present on said singulated unit; andmeasuring if there is current flow through said pathway.The invention further includes an integrated circuit (IC) die mounted on and packaged with the BGA substrate, formed by a method comprising the steps of:making electrical connections between the IC die and the substrate, including forming bond finger wire bonds;testing the electrical integrity of each bond finger wire bond according to the method of this invention;forming a package mold on the substrate;attaching solder balls to the bottom side of the substrate; andsingulating the substrate.
Owner:CYPRESS SEMICON CORP

System and methods for connecting electrical components

The present disclosure is directed to methods and devices that use a contact interface for establishing an electrical connection with an electrical component. In certain exemplary embodiments, the contact interface of a device includes at least one loading fiber and at least one conductor having at least one contact point. The conductor(s) is coupled to a loading fiber so that an electrical connection can be established between the contact point(s) of the conductor(s) and the electrical component when the device is engaged with the electrical component. In certain exemplary embodiments, a conductor is woven with, or wound around, a loading fiber. In some exemplary embodiments, the conductor is comprised of a shaped contact and a conductive lead.The present disclosure is also directed to methods and devices for testing the electrical integrity or functionality of an electrical component. In certain exemplary embodiments, the device includes a plurality of loading fibers, a plurality of conductors and a plurality of tensioning guides. Each conductor can be coupled to at least one loading fiber. The tensioning guides can be disposed on at least one side of each said conductor. In such embodiments, electrical connections can be established between at least a portion of the plurality of conductors and the electrical component when the device is engaged with the electrical component. At least a portion of the plurality of loading fibers may come into contact with the plurality of tensioning guides when the device is engaged with the electrical component. In one exemplary embodiment, the device comprises a burn-in socket device. In another exemplary embodiment, the device comprises a test socket device.
Owner:METHODE ELETRONICS INC

An intelligent power module multi-physical field coupling simulation analysis method and system

ActiveCN109783885AOptimizing electro-magnetic-thermal designImprove performanceSpecial data processing applicationsElement analysisPhysical field
The invention discloses an intelligent power module multi-physical field coupling simulation analysis method and system, and the method comprises the steps: building an overall geometric model of an intelligent power module according to an intelligent power module circuit design schematic diagram; Performing finite element grid segmentation and discretization processing on the overall geometric model, performing analyzing to obtain parasitic parameters in a conductive path and a current-carrying element, and generating an equivalent circuit model; Establishing an electrical integrity model ofthe main circuit and the control circuit; Respectively solving the thermal field and the magnetic field, and establishing a stress-strain relationship and a failure model in the system level; Constructing a physical field coupling analysis model according to the stress-strain relationship, the failure model and the electrical integrity model; And based on the coupling analysis model, carrying outcurrent, magnetic field and heat dissipation state rule analysis. Parameter extraction, field distribution and coupling calculation of multi-physical field analysis can be carried out across differentfinite element analysis software, and multi-physical field coupling analysis under complex boundary conditions is completed.
Owner:SHANDONG NORMAL UNIV

Method and materials for bonding electrodes to interconnect layers in solid oxide fuel cell stacks

A method and related bonding compositions for use in assembling a solid oxide fuel cell (“SOFC”) stack having thermally and chemically stable and electrically conductive bonds between alternating fuel cells and interconnect components in the stack. The improved method and materials allow for the assembly of solid oxide fuel cells having a stronger and more reliable bond with good electrical contact in situ between the SOFC interconnect layers (plates) and the electrodes. The bonding materials and method according to the invention provide good electrical performance while maintaining the mechanical and electrical integrity of SOFC stacks without requiring excessive mechanical compression of the stack as exemplified by prior art systems. The preferred bonding agents comprise a primary phase that provides the electrical conduction path during fuel cell operation, as well as the mechanical strength necessary to insure a reliable connection between the interconnect and the relevant anode or cathode surfaces of the fuel cell. Secondary phases can be added in small amounts to the primary phase to improve adhesion. An exemplary method according to the invention also contemplates various different steps for pre-treating the surfaces of the interconnect plates and electrodes to improve their surface bonding properties.
Owner:CUMMINS ENTERPRISE LLC

Formulation and fabrication of an improved Ni based composite Ohmic contact to n-SiC for high temperature and high power device applications

A composite Pt / Ti / WSi / Ni Ohmic contact has been fabricated by a physical deposition process which uses electron beam evaporation and dc-sputter deposition. The Ni based composite Ohmic contact on n-Sic is rapid thermally annealed (RTA) at 950° C. to 1000° C. for 30 s to provide excellent current-voltage characteristics, an abrupt, void free contact-SiC interface, retention of the as-deposited contact layer width, smooth surface morphology and an absence of residual carbon within the contact layer and / or at the Ohmic contact-SiC interface. The annealed produced Ni2Si interfacial phase is responsible for the superior electrical integrity of the Ohmic contact to n-SiC. The effects of contact delamination due to stress associated with interfacial voiding has been eliminated. Wire bonding failure, non-uniform current flow and SiC polytype alteration due to extreme surface roughness have also been abolished. The Ohmic contact also avoids electrical instability associated with carbon inclusions within the contact metallization and / or at the contact-SiC interface, that occur under prolonged high temperature and power device operations. Overall, this contact is reliable for high temperature and high power operations and the stresses inclusive of use under those conditions.
Owner:UNITED STATES OF AMERICA THE AS REPRESENTED BY THE SEC OF THE ARMY

Extra-high-voltage cooling shielding clothes for live working

The invention provides extra-high-voltage cooling shielding clothes for live working. The shielding clothes comprise a shielding clothes body, cooling assemblies arranged on the shielding clothes body, and a detecting unit. The shielding clothes body comprises a conduction outer lining, a cooling inner lining, and a ventilating layer sandwiched between the conduction outer lining and the cooling inner lining. The number of the cooling assemblies is at least four. Each cooling assembly comprises one air guide opening and a minitype fan connected with the air guide opening, and the air guide openings are formed in the same position on the shielding clothes body. The shielding clothes are convenient to assemble and disassemble without damaging the whole shielding efficiency of the shielding clothes; while the electric integrity of the shielding clothes is ensured, air volume is conveyed uniformly, and effective cooling is ensured; meanwhile, mobility of airflow is improved, the coverage area is increased, and the temperature of the human body under the high-temperature condition is reduced effectively by means of evaporation of sweat; the situation that due to the unsmooth airflow, the clothes are fluffy and swell, and inconvenience is brought to operation of an operator is avoided, and the safety of equipment and the personal safety of the operator are ensured.
Owner:CHINA ELECTRIC POWER RES INST +2

Systems and methods for connecting electrical components

The present disclosure is directed to methods and devices that use a contact interface for establishing an electrical connection with an electrical component. In certain exemplary embodiments, the contact interface of a device includes at least one loading fiber and at least one conductor having at least one contact point. The conductor(s) is coupled to a loading fiber so that an electrical connection can be established between the contact point(s) of the conductor(s) and the electrical component when the device is engaged with the electrical component. In certain exemplary embodiments, a conductor is woven with, or wound around, a loading fiber. In some exemplary embodiments, the conductor is comprised of a shaped contact and a conductive lead. The present disclosure is also directed to methods and devices for testing the electrical integrity or functionality of an electrical component. In certain exemplary embodiments, the device includes a plurality of loading fibers, a plurality of conductors and a plurality of tensioning guides. Each conductor can be coupled to at least one loading fiber. The tensioning guides can be disposed on at least one side of each said conductor. In such embodiments, electrical connections can be established between at least a portion of the plurality of conductors and the electrical component when the device is engaged with the electrical component. At least a portion of the plurality of loading fibers may come into contact with the plurality of tensioning guides when the device is engaged with the electrical component. In one exemplary embodiment, the device comprises a burn-in socket device. In another exemplary embodiment, the device comprises a test socket device.
Owner:METHODE ELETRONICS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products