Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

312results about How to "More processed" patented technology

Assembly with osmolality-increasing fluid

InactiveUS20050137582A1Low friction characteristicSimple procedureWound drainsMixingUrologyReady to use
A catheter assembly is disclosed comprising: a hydrophilic catheter; a wetting fluid for wetting of the catheter; and a receptacle enclosing at least the insertable part of the catheter and the wetting fluid. Further, the wetting fluid is a solution incorporating at least one osmolality-increasing compound, and the total concentration of the osmolality-increasing compound(s) is very high, preferably exceeding 600 mOsm/dm3. The wetting fluid could either be arranged in contact with the hydrophilic surface layer of the catheter in the receptacle, for preservation of the hydrophilic surface layer in a wetted state during accommodation in said receptacle and provision of a ready-to-use catheter assembly, or be arranged to keep the wetting fluid separated from the hydrophilic surface layer of the catheter during storage, but to be brought into contact with said hydrophilic surface layer upon activation before an intended use of the catheter. A similar method and wetting fluid is disclosed as well. The provision of the osmolality-increasing compound in the wetting fluid provides several advantages per se, such as a improved properties of the hydrophilic coating, a more predictable and controllable wetting process, a more expedient and cost efficient production, etc. Further, the use of this very high concentration of osmolality-increasing compound in the wetting fluid has proven remarkably efficient.
Owner:ASTRA TECH SE

Process and systems for the epoxidation of an olefin

A process for the epoxidation of an olefin, which process comprises reacting a feed comprising the olefin, oxygen and a reaction modifier in the presence of a highly selective silver-based catalyst at a reaction temperature T, and with the reaction modifier being present in a relative quantity Q which is the ratio of an effective molar quantity of active species of the reaction modifier present in the feed to an effective molar quantity of hydrocarbons present in the feed, and which process comprises the steps of:
    • operating at a first operating phase wherein the value of T is T1 and the value of Q is Q1, and
    • subsequently operating at a second operating phase at a reaction temperature which is different from the reaction temperature employed in the first operating phase, such that the value of T is T2 and the value of Q is substantially Q2, whereby Q2 is determined by calculation and Q2 is defined by the formula
Q2=Q1+B(T2−T1),
wherein B denotes a constant factor which is greater than 0; a reaction system suitable for performing the process for the epoxidation of an olefin; a computer program product which comprises a computer readable program recorded on a computer readable medium, suitable for instructing a data processing system of a computer system to execute calculations for the process for the epoxidation of an olefin; and a computer system which comprises the computer program product and a data processing system.
Owner:SHELL OIL CO

System and method for identifying and labeling fields of text associated with scanned business documents

A system for electronically distilling information from a business document uses a network scanner to electronically scan a platen area, having a business document thereon, to create a bitmap. A network server carries out a segmentation process to segment the scan generated bitmap into a bitmap object, the bitmap object corresponding to the scanned business document; a bitmap to text conversion process to convert the bitmap object into a block of text; a semantic recognition process to generate a structured representation of semantic entities corresponding to the scanned business document; and a document generation process to convert the structured representation into a structure text file. The semantic recognition process includes the processes of generating, for each line of text having a keyword therein, a terminal symbol corresponding to the keyword therein; generating, for each line of text not having a keyword therein and absent of numeric characters, an alphabetic terminal symbol; generating, for each line of text not having a keyword therein and having a numeric character therein, an alphanumeric terminal symbol; generating a string of terminal symbols from the generated terminal symbols; determining a probable parsing of the generated string of terminal symbols; labeling each text line, according to a determined function, with non-terminal symbols; and parsing the business document information text into fields of business document information text based upon the non-terminal symbol of each text line and the determined probable parsing of the generated string of terminal symbols.
Owner:XEROX CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products