Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

651 results about "Gigabit Ethernet" patented technology

In computer networking, Gigabit Ethernet (GbE or 1 GigE) is the various technologies for transmitting Ethernet frames at a rate of a gigabit per second (1,000,000,000 bits per second), as defined by the IEEE 802.3ab standard. It came into use beginning in 1999, gradually supplanting Fast Ethernet in wired local networks, as a result of being considerably faster. The cables and equipment are very similar to previous standards and have been very common and economical since 2010.

System and method for optimizing network capacity in a cellular wireless network

A system and method is disclosed for increasing the efficiency of a cellular communication network, reduce ongoing operating costs and increase revenue. According to one aspect, a method is disclosed for increasing the efficiency of a cellular communication network whereby network capacity in the radio access network (RAN) and baseband processing for wireless connections are dynamically adjusted to automatically provision sufficient bandwidth and baseband processing capacity in response to changes in the network. The method is further extended by implementing policy management which allows wireless carriers to develop and implement network based policies to automatically increase or decrease the amount of processing resources and network bandwidth required from any cell site, hub or mobile switching office. According to another aspect, network efficiency is enhanced by utilizing a novel cellular network infrastructure. RF signals from cell site antennas of various technology types are demodulated, digital bit information is extracted from the RF signals, processed, and groomed into Gigabit Ethernet/Resilient Packet Ring (GigE/RPR) or Ethernet over copper traffic flows using specific Quality of Service (QoS) priorities. The GigE/RPR traffic flows are routed to hub sites or mobile switching offices, at which point the packetized information is extracted and converted to RF signals that are equivalent to the signals that were received at the antenna. The RF signals are sent over coaxial cable to a network hub including a pool of Base Transceiver Stations (BTSs) (or Node Bs). The hub is coupled to one or more mobile switching offices via a second fiber optic ring.
Owner:CHAMBERS MAHDI +1

Gigabit Ethernet Adapter

A gigabit Ethernet adapter provides a provides a low-cost, low-power, easily manufacturable, small form-factor network access module which has a low memory demand and provides a highly efficient protocol decode. The invention comprises a hardware-integrated system that both decodes multiple network protocols byte-streaming manner concurrently and processes packet data in one pass, thereby reducing system memory and form factor requirements, while also eliminating software CPU overhead. A preferred embodiment of the invention comprises a plurality of protocol state machines that decode network protocols such as TCP, IP, User Datagram Protocol (UDP), PPP, Raw Socket, RARP, ICMP, IGMP, iSCSI, RDMA, and FCIP concurrently as each byte is received. Each protocol handler parses, interprets, and strips header information immediately from the packet, requiring no intermediate memory. The invention provides an internet tuner core, peripherals, and external interfaces. A network stack processes, generates and receives network packets. An internal programmable processor controls the network stack and handles any other types of ICMP packets, IGMP packets, or packets corresponding to other protocols not supported directly by dedicated hardware. A virtual memory manager is implemented in optimized, hardwired logic. The virtual memory manager allows the use of a virtual number of network connections which is limited only by the amount of internal and external memory available.
Owner:NVIDIA CORP

Optical line terminal for managing link status of optical network units and gigabit ethernet passive optical network employing same

A system and method for managing link status in Gigabit Ethernet passive optical network (GE-PON) units (ONUs) is disclosed. The GE-PON comprises one or more ONUs allocated data transmission periods, respectively. Each of the ONUs sends a report signal and a data signal in a corresponding one of the allocated data transmission periods. The report signal contains a signal to request allocation of a bandwidth for data signal transmission in a next window period. The GE-PON further comprises an optical splitter having its one side connected with the ONUs and its other side connected with at least one optical communication channel. The optical splitter switches an input signal to a desired destination. The GE-PON further comprises an optical line terminal (OLT) for determining whether the report signal is received, identifying a specific one of the ONUs having sent the report signal when the report signal is received, determining whether the data signal is received from the specific ONU in a specific one of the data transmission periods allocated to the specific ONU, and discriminating and managing a link status of the specific ONU in accordance with the determination made.
Owner:SAMSUNG ELECTRONICS CO LTD

Method and apparatus for a multi-gigabit ethernet architecture

An Ethernet architecture is provided for connecting a computer system or other network entity to a dedicated Ethernet network medium. The network interface enables the transmission and receipt of data by striping individual Ethernet frames across a plurality of logical channels and may thus operate at substantially the sum of the individual channel rates. Each channel may be conveyed by a separate conductor (e.g., in a bundle) or the channels may be carried simultaneously on a shared medium (e.g., an electrical or optical conductor that employs a form of multiplexing). On a sending station, a distributor within the sender's network interface receives Ethernet frames (e.g., from a MAC) and distributes frame bytes in a round-robin fashion on the plurality of channels. Each “mini-frame” is separately framed and encoded for transmission across its channel. On a receiving station, the receiver's network interface includes a collector for collecting the multiple mini-frames (e.g., after decoding) and reconstructing the frame's byte stream (e.g., for transfer to the receiver's MAC). The first and last bytes of each frame and mini-frame are marked for ease of recognition. Multiple unique idle symbols may be employed for transmission during inter-packet gaps to facilitate the collector's synchronization of the multiple channels and/or enhance error detection. A maximum channel skew is specified, and each received channel may be buffered with an elasticity that is proportional to the maximum skew so that significant propagation delay may be encountered between channels without disrupting communications.
Owner:ORACLE INT CORP

System and method for optimizing network capacity in a cellular wireless network

A system and method is disclosed for increasing the efficiency of a cellular communication network, reduce ongoing operating costs and increase revenue. According to one aspect, a method is disclosed for increasing the efficiency of a cellular communication network whereby network capacity in the radio access network (RAN) and baseband processing for wireless connections are dynamically adjusted to automatically provision sufficient bandwidth and baseband processing capacity in response to changes in the network. The method is further extended by implementing policy management which allows wireless carriers to develop and implement network based policies to automatically increase or decrease the amount of processing resources and network bandwidth required from any cell site, hub or mobile switching office. According to another aspect, network efficiency is enhanced by utilizing a novel cellular network infrastructure. RF signals from cell site antennas of various technology types are demodulated, digital bit information is extracted from the RF signals, processed, and groomed into Gigabit Ethernet / Resilient Packet Ring (GigE / RPR) or Ethernet over copper traffic flows using specific Quality of Service (QoS) priorities. The GigE / RPR traffic flows are routed to hub sites or mobile switching offices, at which point the packetized information is extracted and converted to RF signals that are equivalent to the signals that were received at the antenna. The RF signals are sent over coaxial cable to a network hub including a pool of Base Transceiver Stations (BTSs) (or Node Bs). The hub is coupled to one or more mobile switching offices via a second fiber optic ring.
Owner:CHAMBERS MAHDI +1

Satellite-borne electronic equipment comprehensive management and control system

The invention discloses a satellite-borne electronic equipment comprehensive management and control system and aims to provides the satellite-borne electronic equipment comprehensive management and control system which is high in integration, stable and reliable and capable of reducing a device number and redundant remote measurement and remote control interfaces. According to the technical field, each module in a comprehensive management and control unite and a comprehensive service unit is connected to a 1553B bus through a board-level management controller in the module so as to carry out data monitoring and instruction data transmission; by means of a J599 type connector, the comprehensive service unit realizes external gigabit Ethernet data communication among units and management and control data isolation and interaction; the comprehensive management and control unite receives platform remote control, time and attitude information and sends remote measurement and data transmission data through a management and control duty module; and the comprehensive management and control unite is configured to X1 or X4 mode through a Rapid IO management module, and a Rapid IO network topological structure in the unit is configured to a single satellite or double mode through the Rapid IO management module.
Owner:10TH RES INST OF CETC

Community network system with broadband integrated services

A community network system with broadband integrated services includes video servers, video storages, video conference servers, satellite digital television receiver servers, a network accounting server, a network management server, Gigabit Ethernet Switches, Fast Ethernet switches, home gateways, wireless gateways, digital television sets, analogue television sets, computers, PCs with wireless interface, stationary IP telephones, and wireless IP mobile phones. The IP stationary phone can be connected between the Fast Ethernet switch and the home gateway, and also can be connected between the home gateway and the computer. The wireless gateway is connected to the mobile phone and a mobile device. The satellite digital television receiver server is connected to a satellite signal receiver antenna. The backbone Gigabit Ethernet Switch is connected to a Metropolitan Area Network via a 1000 Mbps or 100 Mbps port. The system simultaneously provides the services of digital television, Internet access of the computer and IP telephone. The present invention achieves the service integration of television network, telephone network and computer network, and the integration of wired and wireless networks, and ensures the qualities of various services, information security and reasonable accounting.
Owner:WU ZHIMEI +4
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products