Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

347results about "Tar working-up by solvent extraction" patented technology

Composite process for treatment of inferior residual oil

The invention discloses a combined process method for treating inferior residual oil. The method comprises the following steps: a residual oil material enters a solvent deasphalting device to obtain DAO and deoil asphalt; the obtained DAO enters a hydrogenation device of a boiling bed and is treated to obtained a lightweight distillation fraction and hydrogenated tail oil; the hydrogenated tail oil enters a catalytic cracking device and is treated to obtain a lightweight distillation fraction and oil slurry; at least partial oil slurry and the deoil asphalt are mixed, enter a hydrogenation device of a suspension bed and are treated to obtain a lightweight distillation fraction and unconverted tail oil, wherein the unconverted tail oil circularly returns the solvent deasphalting device; and the lightweight distillation fraction and the DAO are mixed and enter the hydrogenation device of the boiling bed. The combined process course organically combines a decarbonization process and a hydrogenation process; and according to different properties of raw materials, a corresponding process and operation condition is adopted so as to maximize conversion of the residual oil material while minimizing equipment investment.
Owner:CHINA PETROLEUM & CHEM CORP +1

Deep separation method and processing system for the separation of heavy oil through granulation of coupled post-extraction asphalt residue

The present invention is a separation method and system in which granulation of coupled post-extraction asphalt residue is used to achieve deep separation of heavy oil. A dispersion solvent is introduced into the asphalt phase after separation by solvent extraction and the asphalt phase undergoes rapid phase change in a gas-solid separator and is dispersed into solid particles while the solvent vaporizes, resulting in low temperature separation of asphalt and solvent with adjustable size of the asphalt particles. The separation method of this invention also includes a three-stage separation of heavy oil feedstock, in which the deasphalted oil phase separated from heavy oil is treated with supercritical solvent and results in the further separation of the resin portion of the deasphalted oil, maximizing the yield and quality of the deasphalted oil. The processes and systems in this invention use atmospheric pressure and a low temperature gas-solid separator instead of a high temperature and high pressure furnace and do not require the feed pre-heating or heat exchange equipment at the inlet of resin separator column, resulting in a simplified process flow and reduced investment.
Owner:CHINA UNIV OF PETROLEUM (BEIJING)

Method and device for automated control of enhanced metal and amine removal from crude oil

A method for removing calcium, iron, other metals, and amines from crude oil in a refinery desalting process includes the steps of adding a wash water to the crude oil; adding the wash water to the crude oil to create an emulsion; adding to the wash water, the crude oil or the emulsion an acid additive consisting of at least one of the following: oxalic acid, citric acid, water-soluble hydroxyacid selected from the group consisting of glycolic acid, gluconic acid, C.sub.2-C.sub.4 alpha-hydroxy acids, malic acid, lactic acid, poly-hydroxy carboxylic acids, thioglycolic acid, chloroacetic acid, polymeric forms of the above hydroxyacids, poly-glycolic esters, glycolate ethers, and ammonium salt and alkali metal salts of these hydroxyacids, and mixtures thereof; heating at least one of the crude oil, the wash water or the emulsion to a desired temperature; resolving the emulsion containing the acid additive into a hydrocarbon phase and an aqueous phase using electrostatic coalescence, the metals and amines being transferred to the aqueous phase; measuring at least one desalting process characteristic at at least one process point; performing a statistical calculation of the desalting process performance based upon the measuring; and adjusting a control setting of the desalting process as a function of the statistical calculation. Other methods and devices are also provided.
Owner:ASSATEAGUE OIL

Deep separation method and processing system for the separation of heavy oil through granulation of coupled post-extraction asphalt residue

The present invention is a separation method and system in which granulation of coupled post-extraction asphalt residue is used to achieve deep separation of heavy oil. A dispersion solvent is introduced into the asphalt phase after separation by solvent extraction and the asphalt phase undergoes rapid phase change in a gas-solid separator and is dispersed into solid particles while the solvent vaporizes, resulting in low temperature separation of asphalt and solvent with adjustable size of the asphalt particles. The separation method of this invention also includes a three-stage separation of heavy oil feedstock, in which the deasphalted oil phase separated from heavy oil is treated with supercritical solvent and results in the further separation of the resin portion of the deasphalted oil, maximizing the yield and quality of the deasphalted oil. The processes and systems in this invention use atmospheric pressure and a low temperature gas-solid separator instead of a high temperature and high pressure furnace and do not require the feed pre-heating or heat exchange equipment at the inlet of resin separator column, resulting in a simplified process flow and reduced investment.
Owner:CHINA UNIV OF PETROLEUM (BEIJING)
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products