Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

117results about How to "Improve hole injection efficiency" patented technology

SOI LIGBT with controllable collector trough

The invention belongs to the technical field of power semiconductors, and specifically relates to an SOI LIGBT with a controllable collector trough. Compared with a conventional structure, the LIGBT mainly introduces a controllable collector trough structure to a collector end and introduces a plurality of trough grid structures to the collector. During the forwarding conduction, the bias voltage of a trough collector relative to the collector is negative, and a side wall of the collector trough forms a high-density P-type reflection layer so as to increase the hole implantation. The segmented trough grid structures serve as the blocking layers of hole extraction. Therefore, the increase of the hole/electron concentration in a drift region facilitates the obtaining of a lower forwarding conduction voltage drop. Meanwhile, because an N+ collector region is located on the upper surface of a P+ collector region and does not make contact with an N-type drift region, a new device does not has a voltage turning-back effect. The beneficial effects of the invention are that the LIGBT, compared with a conventional short-circuit anode-LIGBT structure, is higher in switching-off speed and lower in forwarding conduction voltage drop, and does not have the voltage turning-back effect.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA +1

Light emitting diode with electron blocking layer in resonant tunneling structure

ActiveCN107195746AImprove the blocking effectIncreased efficiency of injection into the active regionSemiconductor devicesPotential wellOhmic contact
The invention discloses a light emitting diode with an electron blocking layer in a resonant tunneling structure. The light emitting diode comprises a substrate, an n-type nitride layer, a multiple quantum well layer, the electron blocking layer, a p-type nitride layer and a p-type nitride ohmic contact layer, an n-type electrode which is arranged on the n-type nitride layer, and a p-type electrode which is arranged on the p-type nitride layer, wherein the substrate, the n-type nitride layer, the multiple quantum well layer, the electron blocking layer, the p-type nitride layer and the p-type nitride ohmic contact layer are arranged in order from the bottom up. The electron blocking layer is composed of a p-type doped nitride barrier layer, a non-doped nitride potential well layer, and a non-doped barrier layer which increases the hole transmittance through a resonance tunneling effect, wherein the p-type doped nitride barrier layer, the non-doped nitride potential well layer and the non-doped barrier layer are arranged in order from bottom to top. The light emitting diode provided by the invention has the advantages that electrons are effectively prevented from passing through an active region into a p-type region, which increases the injection efficiency of a hole into the active region through the electron blocking layer; a good electronic blocking effect is realized through a simple growth mode and less layer structures; and the hole injection efficiency significantly higher than a traditional electronic blocking layer structure is acquired.
Owner:SOUTHEAST UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products